Nuprl Lemma : mcompact-rat-cube
∀k:ℕ. ∀c:ℚCube(k).  ((↑Inhabited(c)) 
⇒ mcompact({x:ℝ^k| in-rat-cube(k;x;c)} rn-prod-metric(k)))
Proof
Definitions occuring in Statement : 
in-rat-cube: in-rat-cube(k;p;c)
, 
rn-prod-metric: rn-prod-metric(n)
, 
real-vec: ℝ^n
, 
mcompact: mcompact(X;d)
, 
nat: ℕ
, 
assert: ↑b
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
inhabited-rat-cube: Inhabited(c)
, 
rational-cube: ℚCube(k)
Definitions unfolded in proof : 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
cand: A c∧ B
, 
in-rat-cube: in-rat-cube(k;p;c)
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
real-vec: ℝ^n
, 
top: Top
, 
ext-eq: A ≡ B
, 
rn-prod-metric: rn-prod-metric(n)
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
inhabited-rat-interval: Inhabited(I)
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
prop: ℙ
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
rational-interval: ℚInterval
, 
rational-cube: ℚCube(k)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
sq_stable__rleq, 
subtype_rel_weakening, 
subtype_rel_transitivity, 
rn-prod-metric_wf, 
mcompact_functionality, 
real-vec_wf, 
in-rat-cube_wf, 
rleq_wf, 
subtype_rel_dep_function, 
istype-void, 
member_rccint_lemma, 
q_le_wf, 
iff_weakening_equal, 
assert-q_le-eq, 
qle_wf, 
assert-inhabited-rat-cube, 
rleq-rat2real, 
mcompact-interval, 
istype-nat, 
rational-cube_wf, 
inhabited-rat-cube_wf, 
istype-assert, 
metric-on-subtype, 
rmetric_wf, 
int_seg_wf, 
rat2real_wf, 
rccint_wf, 
i-member_wf, 
real_wf, 
mcompact-product
Rules used in proof : 
imageElimination, 
baseClosed, 
imageMemberEquality, 
functionEquality, 
functionExtensionality, 
functionIsType, 
productIsType, 
productEquality, 
voidElimination, 
isect_memberEquality_alt, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
setIsType, 
independent_isectElimination, 
rename, 
setElimination, 
natural_numberEquality, 
universeIsType, 
because_Cache, 
independent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
equalityIstype, 
sqequalRule, 
productElimination, 
inhabitedIsType, 
applyEquality, 
isectElimination, 
hypothesis, 
setEquality, 
lambdaEquality_alt, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}k:\mBbbN{}.  \mforall{}c:\mBbbQ{}Cube(k).    ((\muparrow{}Inhabited(c))  {}\mRightarrow{}  mcompact(\{x:\mBbbR{}\^{}k|  in-rat-cube(k;x;c)\}  ;rn-prod-metric(k)))
Date html generated:
2019_10_31-AM-06_03_35
Last ObjectModification:
2019_10_30-AM-11_36_25
Theory : real!vectors
Home
Index