Nuprl Lemma : mcompact-rat-cube

k:ℕ. ∀c:ℚCube(k).  ((↑Inhabited(c))  mcompact({x:ℝ^k| in-rat-cube(k;x;c)} ;rn-prod-metric(k)))


Proof




Definitions occuring in Statement :  in-rat-cube: in-rat-cube(k;p;c) rn-prod-metric: rn-prod-metric(n) real-vec: ^n mcompact: mcompact(X;d) nat: assert: b all: x:A. B[x] implies:  Q set: {x:A| B[x]}  inhabited-rat-cube: Inhabited(c) rational-cube: Cube(k)
Definitions unfolded in proof :  squash: T sq_stable: SqStable(P) cand: c∧ B in-rat-cube: in-rat-cube(k;p;c) so_apply: x[s] so_lambda: λ2x.t[x] real-vec: ^n top: Top ext-eq: A ≡ B rn-prod-metric: rn-prod-metric(n) iff: ⇐⇒ Q guard: {T} inhabited-rat-interval: Inhabited(I) and: P ∧ Q uiff: uiff(P;Q) uimplies: supposing a subtype_rel: A ⊆B nat: prop: pi2: snd(t) pi1: fst(t) rational-interval: Interval rational-cube: Cube(k) uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x]
Lemmas referenced :  sq_stable__rleq subtype_rel_weakening subtype_rel_transitivity rn-prod-metric_wf mcompact_functionality real-vec_wf in-rat-cube_wf rleq_wf subtype_rel_dep_function istype-void member_rccint_lemma q_le_wf iff_weakening_equal assert-q_le-eq qle_wf assert-inhabited-rat-cube rleq-rat2real mcompact-interval istype-nat rational-cube_wf inhabited-rat-cube_wf istype-assert metric-on-subtype rmetric_wf int_seg_wf rat2real_wf rccint_wf i-member_wf real_wf mcompact-product
Rules used in proof :  imageElimination baseClosed imageMemberEquality functionEquality functionExtensionality functionIsType productIsType productEquality voidElimination isect_memberEquality_alt dependent_set_memberEquality_alt independent_pairFormation setIsType independent_isectElimination rename setElimination natural_numberEquality universeIsType because_Cache independent_functionElimination equalitySymmetry equalityTransitivity equalityIstype sqequalRule productElimination inhabitedIsType applyEquality isectElimination hypothesis setEquality lambdaEquality_alt hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}k:\mBbbN{}.  \mforall{}c:\mBbbQ{}Cube(k).    ((\muparrow{}Inhabited(c))  {}\mRightarrow{}  mcompact(\{x:\mBbbR{}\^{}k|  in-rat-cube(k;x;c)\}  ;rn-prod-metric(k)))



Date html generated: 2019_10_31-AM-06_03_35
Last ObjectModification: 2019_10_30-AM-11_36_25

Theory : real!vectors


Home Index