Nuprl Lemma : mcompact-product
∀k:ℕ. ∀X:ℕk ⟶ Type. ∀d:i:ℕk ⟶ metric(X i).  ((∀i:ℕk. mcompact(X i;d i)) 
⇒ mcompact(i:ℕk ⟶ (X i);prod-metric(k;d)))
Proof
Definitions occuring in Statement : 
mcompact: mcompact(X;d)
, 
prod-metric: prod-metric(k;d)
, 
metric: metric(X)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
metric-space: MetricSpace
, 
prop: ℙ
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
prod-metric-space: prod-metric-space(k;X)
, 
mk-metric-space: X with d
, 
so_apply: x[s]
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
mcompact: mcompact(X;d)
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
prod-metric_wf, 
mcomplete_wf, 
mk-metric-space_wf, 
prod-metric-space-complete, 
istype-nat, 
istype-universe, 
metric_wf, 
mcompact_wf, 
int_seg_wf, 
m-TB-product
Rules used in proof : 
functionEquality, 
dependent_pairEquality_alt, 
applyLambdaEquality, 
hyp_replacement, 
equalitySymmetry, 
functionExtensionality_alt, 
universeEquality, 
instantiate, 
functionIsType, 
because_Cache, 
productElimination, 
independent_functionElimination, 
hypothesis, 
rename, 
setElimination, 
natural_numberEquality, 
universeIsType, 
applyEquality, 
lambdaEquality_alt, 
sqequalRule, 
isectElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}k:\mBbbN{}.  \mforall{}X:\mBbbN{}k  {}\mrightarrow{}  Type.  \mforall{}d:i:\mBbbN{}k  {}\mrightarrow{}  metric(X  i).
    ((\mforall{}i:\mBbbN{}k.  mcompact(X  i;d  i))  {}\mRightarrow{}  mcompact(i:\mBbbN{}k  {}\mrightarrow{}  (X  i);prod-metric(k;d)))
Date html generated:
2019_10_31-AM-05_59_58
Last ObjectModification:
2019_10_30-AM-11_18_09
Theory : reals
Home
Index