Nuprl Lemma : mcompact-product

k:ℕ. ∀X:ℕk ⟶ Type. ∀d:i:ℕk ⟶ metric(X i).  ((∀i:ℕk. mcompact(X i;d i))  mcompact(i:ℕk ⟶ (X i);prod-metric(k;d)))


Proof




Definitions occuring in Statement :  mcompact: mcompact(X;d) prod-metric: prod-metric(k;d) metric: metric(X) int_seg: {i..j-} nat: all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  metric-space: MetricSpace prop: pi2: snd(t) pi1: fst(t) prod-metric-space: prod-metric-space(k;X) mk-metric-space: with d so_apply: x[s] nat: so_lambda: λ2x.t[x] uall: [x:A]. B[x] member: t ∈ T mcompact: mcompact(X;d) implies:  Q all: x:A. B[x]
Lemmas referenced :  prod-metric_wf mcomplete_wf mk-metric-space_wf prod-metric-space-complete istype-nat istype-universe metric_wf mcompact_wf int_seg_wf m-TB-product
Rules used in proof :  functionEquality dependent_pairEquality_alt applyLambdaEquality hyp_replacement equalitySymmetry functionExtensionality_alt universeEquality instantiate functionIsType because_Cache productElimination independent_functionElimination hypothesis rename setElimination natural_numberEquality universeIsType applyEquality lambdaEquality_alt sqequalRule isectElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut independent_pairFormation lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}k:\mBbbN{}.  \mforall{}X:\mBbbN{}k  {}\mrightarrow{}  Type.  \mforall{}d:i:\mBbbN{}k  {}\mrightarrow{}  metric(X  i).
    ((\mforall{}i:\mBbbN{}k.  mcompact(X  i;d  i))  {}\mRightarrow{}  mcompact(i:\mBbbN{}k  {}\mrightarrow{}  (X  i);prod-metric(k;d)))



Date html generated: 2019_10_31-AM-05_59_58
Last ObjectModification: 2019_10_30-AM-11_18_09

Theory : reals


Home Index