Nuprl Lemma : m-TB-product

m:ℕ. ∀[X:ℕm ⟶ Type]. ∀[d:i:ℕm ⟶ metric(X[i])].  ((∀i:ℕm. m-TB(X[i];d[i]))  m-TB(i:ℕm ⟶ X[i];prod-metric(m;d)))


Proof




Definitions occuring in Statement :  m-TB: m-TB(X;d) prod-metric: prod-metric(k;d) metric: metric(X) int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q member: t ∈ T so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q nat: so_lambda: λ2x.t[x] rev_implies:  Q int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b squash: T le: A ≤ B ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: nat_plus: + rneq: x ≠ y guard: {T} subtype_rel: A ⊆B pi1: fst(t) rleq: x ≤ y rnonneg: rnonneg(x) equipollent: B biject: Bij(A;B;f) surject: Surj(A;B;f) true: True compose: g prod-metric: prod-metric(k;d) mdist: mdist(d;x;y) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y rdiv: (x/y) req_int_terms: t1 ≡ t2
Lemmas referenced :  m-TB-iff int_seg_wf prod-metric_wf m-TB_wf metric_wf istype-universe istype-nat mul_bounds_1a int_seg_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf istype-le nat_plus_wf rleq_wf mdist_wf rdiv_wf int-to-real_wf rless-int nat_plus_properties decidable__lt intformless_wf itermMultiply_wf intformeq_wf int_formula_prop_less_lemma int_term_value_mul_lemma int_formula_prop_eq_lemma rless_wf le_witness_for_triv equipollent-product nat_plus_subtype_nat int-prod_wf_nat_plus equipollent_inversion int-prod_wf compose_wf squash_wf true_wf real_wf subtype_rel_self iff_weakening_equal set_subtype_base le_wf int_subtype_base subtract_wf lt_int_wf eqtt_to_assert assert_of_lt_int rmul_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf istype-less_than rsum_wf subtract-add-cancel itermSubtract_wf int_term_value_subtract_lemma uimplies_transitivity rleq_functionality rsum-constant2 req_weakening rleq_functionality_wrt_implies rsum_functionality_wrt_rleq2 rleq_weakening_equal decidable__equal_int rinv_wf2 rleq-int-fractions2 rleq-int-fractions req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_const_lemma real_term_value_var_lemma req_transitivity rinv-mul-as-rdiv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt isect_memberFormation_alt cut hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality introduction extract_by_obid isectElimination applyEquality productElimination independent_functionElimination because_Cache functionEquality natural_numberEquality setElimination rename sqequalRule lambdaEquality_alt universeIsType inhabitedIsType functionIsType instantiate universeEquality dependent_set_memberEquality_alt multiplyEquality imageElimination addEquality unionElimination independent_isectElimination approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation promote_hyp productIsType closedConclusion inrFormation_alt equalityTransitivity equalitySymmetry applyLambdaEquality equalityIstype functionExtensionality functionIsTypeImplies imageMemberEquality baseClosed baseApply intEquality sqequalBase equalityElimination cumulativity

Latex:
\mforall{}m:\mBbbN{}
    \mforall{}[X:\mBbbN{}m  {}\mrightarrow{}  Type].  \mforall{}[d:i:\mBbbN{}m  {}\mrightarrow{}  metric(X[i])].
        ((\mforall{}i:\mBbbN{}m.  m-TB(X[i];d[i]))  {}\mRightarrow{}  m-TB(i:\mBbbN{}m  {}\mrightarrow{}  X[i];prod-metric(m;d)))



Date html generated: 2019_10_30-AM-06_51_38
Last ObjectModification: 2019_10_10-PM-07_00_22

Theory : reals


Home Index