Nuprl Lemma : m-TB-product
∀m:ℕ. ∀[X:ℕm ⟶ Type]. ∀[d:i:ℕm ⟶ metric(X[i])].  ((∀i:ℕm. m-TB(X[i];d[i])) 
⇒ m-TB(i:ℕm ⟶ X[i];prod-metric(m;d)))
Proof
Definitions occuring in Statement : 
m-TB: m-TB(X;d)
, 
prod-metric: prod-metric(k;d)
, 
metric: metric(X)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
rev_implies: P 
⇐ Q
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
less_than: a < b
, 
squash: ↓T
, 
le: A ≤ B
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
nat_plus: ℕ+
, 
rneq: x ≠ y
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
pi1: fst(t)
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
equipollent: A ~ B
, 
biject: Bij(A;B;f)
, 
surject: Surj(A;B;f)
, 
true: True
, 
compose: f o g
, 
prod-metric: prod-metric(k;d)
, 
mdist: mdist(d;x;y)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rge: x ≥ y
, 
rdiv: (x/y)
, 
req_int_terms: t1 ≡ t2
Lemmas referenced : 
m-TB-iff, 
int_seg_wf, 
prod-metric_wf, 
m-TB_wf, 
metric_wf, 
istype-universe, 
istype-nat, 
mul_bounds_1a, 
int_seg_properties, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
nat_plus_wf, 
rleq_wf, 
mdist_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
nat_plus_properties, 
decidable__lt, 
intformless_wf, 
itermMultiply_wf, 
intformeq_wf, 
int_formula_prop_less_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_eq_lemma, 
rless_wf, 
le_witness_for_triv, 
equipollent-product, 
nat_plus_subtype_nat, 
int-prod_wf_nat_plus, 
equipollent_inversion, 
int-prod_wf, 
compose_wf, 
squash_wf, 
true_wf, 
real_wf, 
subtype_rel_self, 
iff_weakening_equal, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
subtract_wf, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
rmul_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
istype-less_than, 
rsum_wf, 
subtract-add-cancel, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
uimplies_transitivity, 
rleq_functionality, 
rsum-constant2, 
req_weakening, 
rleq_functionality_wrt_implies, 
rsum_functionality_wrt_rleq2, 
rleq_weakening_equal, 
decidable__equal_int, 
rinv_wf2, 
rleq-int-fractions2, 
rleq-int-fractions, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
req_transitivity, 
rinv-mul-as-rdiv
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
cut, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
applyEquality, 
productElimination, 
independent_functionElimination, 
because_Cache, 
functionEquality, 
natural_numberEquality, 
setElimination, 
rename, 
sqequalRule, 
lambdaEquality_alt, 
universeIsType, 
inhabitedIsType, 
functionIsType, 
instantiate, 
universeEquality, 
dependent_set_memberEquality_alt, 
multiplyEquality, 
imageElimination, 
addEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
promote_hyp, 
productIsType, 
closedConclusion, 
inrFormation_alt, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
equalityIstype, 
functionExtensionality, 
functionIsTypeImplies, 
imageMemberEquality, 
baseClosed, 
baseApply, 
intEquality, 
sqequalBase, 
equalityElimination, 
cumulativity
Latex:
\mforall{}m:\mBbbN{}
    \mforall{}[X:\mBbbN{}m  {}\mrightarrow{}  Type].  \mforall{}[d:i:\mBbbN{}m  {}\mrightarrow{}  metric(X[i])].
        ((\mforall{}i:\mBbbN{}m.  m-TB(X[i];d[i]))  {}\mRightarrow{}  m-TB(i:\mBbbN{}m  {}\mrightarrow{}  X[i];prod-metric(m;d)))
Date html generated:
2019_10_30-AM-06_51_38
Last ObjectModification:
2019_10_10-PM-07_00_22
Theory : reals
Home
Index