Nuprl Lemma : uimplies_transitivity
∀[P,Q,R:ℙ].  (Q supposing P 
⇒ R supposing Q 
⇒ {R supposing P})
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
prop: ℙ
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
isect_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
lambdaFormation, 
sqequalHypSubstitution, 
independent_isectElimination, 
thin, 
hypothesis, 
Error :universeIsType, 
hypothesisEquality, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
cumulativity, 
lambdaEquality, 
Error :inhabitedIsType, 
universeEquality
Latex:
\mforall{}[P,Q,R:\mBbbP{}].    (Q  supposing  P  {}\mRightarrow{}  R  supposing  Q  {}\mRightarrow{}  \{R  supposing  P\})
Date html generated:
2019_06_20-AM-11_14_21
Last ObjectModification:
2018_09_26-AM-10_41_52
Theory : core_2
Home
Index