Nuprl Lemma : m-TB-iff

[X:Type]. ∀[d:metric(X)].  (m-TB(X;d) ⇐⇒ ∀k:ℕ. ∃n:ℕ+. ∃xs:ℕn ⟶ X. ∀x:X. ∃i:ℕn. (mdist(d;x;xs i) ≤ (r1/r(k 1))))


Proof




Definitions occuring in Statement :  m-TB: m-TB(X;d) mdist: mdist(d;x;y) metric: metric(X) rdiv: (x/y) rleq: x ≤ y int-to-real: r(n) int_seg: {i..j-} nat_plus: + nat: uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q apply: a function: x:A ⟶ B[x] add: m natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q all: x:A. B[x] member: t ∈ T rev_implies:  Q exists: x:A. B[x] nat_plus: + nat: uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than: a < b squash: T ge: i ≥  decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top prop: m-TB: m-TB(X;d) spreadn: spread3 rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y subtype_rel: A ⊆B uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 pi1: fst(t) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  istype-nat m-TB_wf nat_plus_wf int_seg_wf rleq_wf mdist_wf rdiv_wf int-to-real_wf rless-int int_seg_properties nat_plus_properties nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermAdd_wf itermVar_wf intformle_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf rless_wf metric_wf istype-universe rleq_functionality_wrt_implies rleq_weakening_equal rleq_weakening itermSubtract_wf req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_var_lemma real_term_value_const_lemma nat_wf subtype_rel_self exists_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt independent_pairFormation lambdaFormation_alt cut introduction extract_by_obid hypothesis universeIsType sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule functionIsType productIsType natural_numberEquality setElimination rename because_Cache applyEquality closedConclusion addEquality independent_isectElimination inrFormation_alt dependent_functionElimination productElimination independent_functionElimination imageElimination unionElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination instantiate universeEquality equalityTransitivity equalitySymmetry promote_hyp dependent_set_memberEquality_alt dependent_pairEquality_alt independent_pairEquality functionExtensionality inhabitedIsType equalityIstype functionEquality

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].
    (m-TB(X;d)  \mLeftarrow{}{}\mRightarrow{}  \mforall{}k:\mBbbN{}.  \mexists{}n:\mBbbN{}\msupplus{}.  \mexists{}xs:\mBbbN{}n  {}\mrightarrow{}  X.  \mforall{}x:X.  \mexists{}i:\mBbbN{}n.  (mdist(d;x;xs  i)  \mleq{}  (r1/r(k  +  1))))



Date html generated: 2019_10_30-AM-06_50_54
Last ObjectModification: 2019_10_10-PM-05_26_48

Theory : reals


Home Index