Nuprl Lemma : m-TB-iff
∀[X:Type]. ∀[d:metric(X)].  (m-TB(X;d) 
⇐⇒ ∀k:ℕ. ∃n:ℕ+. ∃xs:ℕn ⟶ X. ∀x:X. ∃i:ℕn. (mdist(d;x;xs i) ≤ (r1/r(k + 1))))
Proof
Definitions occuring in Statement : 
m-TB: m-TB(X;d)
, 
mdist: mdist(d;x;y)
, 
metric: metric(X)
, 
rdiv: (x/y)
, 
rleq: x ≤ y
, 
int-to-real: r(n)
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
uimplies: b supposing a
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than: a < b
, 
squash: ↓T
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
m-TB: m-TB(X;d)
, 
spreadn: spread3, 
rev_uimplies: rev_uimplies(P;Q)
, 
rge: x ≥ y
, 
subtype_rel: A ⊆r B
, 
uiff: uiff(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
pi1: fst(t)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
istype-nat, 
m-TB_wf, 
nat_plus_wf, 
int_seg_wf, 
rleq_wf, 
mdist_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
int_seg_properties, 
nat_plus_properties, 
nat_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformle_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
rless_wf, 
metric_wf, 
istype-universe, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
rleq_weakening, 
itermSubtract_wf, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
nat_wf, 
subtype_rel_self, 
exists_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
independent_pairFormation, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
universeIsType, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
functionIsType, 
productIsType, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
applyEquality, 
closedConclusion, 
addEquality, 
independent_isectElimination, 
inrFormation_alt, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
imageElimination, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
instantiate, 
universeEquality, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
dependent_set_memberEquality_alt, 
dependent_pairEquality_alt, 
independent_pairEquality, 
functionExtensionality, 
inhabitedIsType, 
equalityIstype, 
functionEquality
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].
    (m-TB(X;d)  \mLeftarrow{}{}\mRightarrow{}  \mforall{}k:\mBbbN{}.  \mexists{}n:\mBbbN{}\msupplus{}.  \mexists{}xs:\mBbbN{}n  {}\mrightarrow{}  X.  \mforall{}x:X.  \mexists{}i:\mBbbN{}n.  (mdist(d;x;xs  i)  \mleq{}  (r1/r(k  +  1))))
Date html generated:
2019_10_30-AM-06_50_54
Last ObjectModification:
2019_10_10-PM-05_26_48
Theory : reals
Home
Index