Nuprl Lemma : equipollent-product

n:ℕ. ∀f:ℕn ⟶ ℕ.  i:ℕn ⟶ ℕf[i] ~ ℕΠ(f[i] i < n)


Proof




Definitions occuring in Statement :  equipollent: B int-prod: Π(f[x] x < k) int_seg: {i..j-} nat: so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B nat: decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top and: P ∧ Q guard: {T} int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) int-prod: Π(f[x] x < k) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b nequal: a ≠ b ∈  iff: ⇐⇒ Q rev_implies:  Q equipollent: B less_than: a < b biject: Bij(A;B;f) inject: Inj(A;B;f) surject: Surj(A;B;f) pi1: fst(t) pi2: snd(t) squash: T
Lemmas referenced :  all_wf int_seg_wf subtract_wf nat_wf equipollent_wf int-prod_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf set_wf less_than_wf primrec-wf2 int_prod0_lemma equipollent-singletons singleton-type-one singleton-type-void-domain int_seg_properties subtype_rel_dep_function int_seg_subtype false_wf subtype_rel_self primrec-unroll eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int decidable__lt lelt_wf int-prod_wf_nat equipollent_functionality_wrt_equipollent2 equipollent_inversion equipollent-multiply product_functionality_wrt_equipollent_left biject_wf decidable__equal_int int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin rename setElimination introduction extract_by_obid sqequalHypSubstitution isectElimination functionEquality natural_numberEquality hypothesisEquality hypothesis sqequalRule lambdaEquality because_Cache applyEquality functionExtensionality dependent_set_memberEquality dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination productElimination equalityElimination equalityTransitivity equalitySymmetry promote_hyp instantiate cumulativity multiplyEquality productEquality independent_pairEquality applyLambdaEquality hyp_replacement imageElimination

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    i:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}f[i]  \msim{}  \mBbbN{}\mPi{}(f[i]  |  i  <  n)



Date html generated: 2017_04_17-AM-09_32_09
Last ObjectModification: 2017_02_27-PM-05_32_55

Theory : equipollence!!cardinality!


Home Index