Nuprl Lemma : equipollent-multiply

a,b:ℕ.  ℕa × ℕ~ ℕb


Proof




Definitions occuring in Statement :  equipollent: B int_seg: {i..j-} nat: all: x:A. B[x] product: x:A × B[x] multiply: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] equipollent: B exists: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] int_seg: {i..j-} nat: uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a lelt: i ≤ j < k le: A ≤ B less_than: a < b squash: T prop: top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) ge: i ≥  guard: {T} implies:  Q not: ¬A false: False less_than': less_than'(a;b) subtype_rel: A ⊆B biject: Bij(A;B;f) inject: Inj(A;B;f) so_lambda: λ2x.t[x] so_apply: x[s] surject: Surj(A;B;f) nat_plus: + div_nrel: Div(a;n;q) sq_type: SQType(T) int_nzero: -o nequal: a ≠ b ∈  subtract: m true: True rev_implies:  Q iff: ⇐⇒ Q
Lemmas referenced :  add-member-int_seg1 istype-le subtract_wf istype-less_than int_seg_wf biject_wf istype-nat int_term_value_mul_lemma itermMultiply_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma istype-int intformless_wf itermConstant_wf itermSubtract_wf itermVar_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties int_seg_properties mul_preserves_le istype-void int_seg_subtype_nat mul_bounds_1a decidable__lt set_subtype_base le_wf int_subtype_base product_subtype_base lelt_wf div_unique istype-false int_term_value_add_lemma itermAdd_wf int_formula_prop_eq_lemma intformeq_wf less_than_wf decidable__equal_int subtype_base_sq remainder_wfa nequal_wf rem_bounds_1 minus-zero minus-add add-commutes condition-implies-le le-add-cancel zero-add add-zero add-associates add_functionality_wrt_le not-equal-2 not-lt-2 div_rem_sum div_bounds_1 false_wf multiply-is-int-iff add-is-int-iff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  productElimination thin sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination multiplyEquality setElimination rename hypothesisEquality hypothesis closedConclusion natural_numberEquality because_Cache independent_isectElimination Error :dependent_set_memberEquality_alt,  independent_pairFormation Error :productIsType,  imageElimination Error :universeIsType,  productEquality Error :inhabitedIsType,  voidElimination Error :isect_memberEquality_alt,  int_eqEquality independent_functionElimination approximateComputation unionElimination dependent_functionElimination applyEquality Error :equalityIstype,  baseApply baseClosed intEquality sqequalBase equalitySymmetry equalityTransitivity applyLambdaEquality addEquality independent_pairEquality cumulativity instantiate minusEquality divideEquality promote_hyp pointwiseFunctionality

Latex:
\mforall{}a,b:\mBbbN{}.    \mBbbN{}a  \mtimes{}  \mBbbN{}b  \msim{}  \mBbbN{}a  *  b



Date html generated: 2019_06_20-PM-02_17_08
Last ObjectModification: 2019_06_19-PM-06_34_45

Theory : equipollence!!cardinality!


Home Index