Nuprl Lemma : int-prod_wf_nat_plus

[n:ℕ]. ∀[f:ℕn ⟶ ℕ+].  (f[x] x < n) ∈ ℕ+)


Proof




Definitions occuring in Statement :  int-prod: Π(f[x] x < k) int_seg: {i..j-} nat_plus: + nat: uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  so_apply: x[s] false: False prop: top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) implies:  Q not: ¬A uimplies: supposing a or: P ∨ Q decidable: Dec(P) all: x:A. B[x] ge: i ≥  nat: nat_plus: + int-prod: Π(f[x] x < k) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-nat int_seg_wf mul_nat_plus istype-less_than int_formula_prop_wf int_term_value_constant_lemma int_formula_prop_less_lemma istype-void int_formula_prop_not_lemma istype-int itermConstant_wf intformless_wf intformnot_wf full-omega-unsat decidable__lt nat_properties nat_plus_wf primrec_wf
Rules used in proof :  inhabitedIsType isectIsTypeImplies functionIsType equalitySymmetry equalityTransitivity axiomEquality applyEquality universeIsType voidElimination isect_memberEquality_alt lambdaEquality_alt dependent_pairFormation_alt independent_functionElimination approximateComputation independent_isectElimination unionElimination dependent_functionElimination rename setElimination natural_numberEquality dependent_set_memberEquality_alt hypothesisEquality hypothesis thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}\msupplus{}].    (\mPi{}(f[x]  |  x  <  n)  \mmember{}  \mBbbN{}\msupplus{})



Date html generated: 2019_10_15-AM-10_21_21
Last ObjectModification: 2019_10_10-PM-06_27_56

Theory : int_2


Home Index