Nuprl Lemma : int-prod_wf_nat_plus
∀[n:ℕ]. ∀[f:ℕn ⟶ ℕ+]. (Π(f[x] | x < n) ∈ ℕ+)
Proof
Definitions occuring in Statement :
int-prod: Π(f[x] | x < k)
,
int_seg: {i..j-}
,
nat_plus: ℕ+
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
natural_number: $n
Definitions unfolded in proof :
so_apply: x[s]
,
false: False
,
prop: ℙ
,
top: Top
,
exists: ∃x:A. B[x]
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
implies: P
⇒ Q
,
not: ¬A
,
uimplies: b supposing a
,
or: P ∨ Q
,
decidable: Dec(P)
,
all: ∀x:A. B[x]
,
ge: i ≥ j
,
nat: ℕ
,
nat_plus: ℕ+
,
int-prod: Π(f[x] | x < k)
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
Lemmas referenced :
istype-nat,
int_seg_wf,
mul_nat_plus,
istype-less_than,
int_formula_prop_wf,
int_term_value_constant_lemma,
int_formula_prop_less_lemma,
istype-void,
int_formula_prop_not_lemma,
istype-int,
itermConstant_wf,
intformless_wf,
intformnot_wf,
full-omega-unsat,
decidable__lt,
nat_properties,
nat_plus_wf,
primrec_wf
Rules used in proof :
inhabitedIsType,
isectIsTypeImplies,
functionIsType,
equalitySymmetry,
equalityTransitivity,
axiomEquality,
applyEquality,
universeIsType,
voidElimination,
isect_memberEquality_alt,
lambdaEquality_alt,
dependent_pairFormation_alt,
independent_functionElimination,
approximateComputation,
independent_isectElimination,
unionElimination,
dependent_functionElimination,
rename,
setElimination,
natural_numberEquality,
dependent_set_memberEquality_alt,
hypothesisEquality,
hypothesis,
thin,
isectElimination,
sqequalHypSubstitution,
extract_by_obid,
sqequalRule,
cut,
introduction,
isect_memberFormation_alt,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution
Latex:
\mforall{}[n:\mBbbN{}]. \mforall{}[f:\mBbbN{}n {}\mrightarrow{} \mBbbN{}\msupplus{}]. (\mPi{}(f[x] | x < n) \mmember{} \mBbbN{}\msupplus{})
Date html generated:
2019_10_15-AM-10_21_21
Last ObjectModification:
2019_10_10-PM-06_27_56
Theory : int_2
Home
Index