Nuprl Lemma : assert-inhabited-rat-cube
∀[k:ℕ]. ∀[c:ℚCube(k)].  uiff(↑Inhabited(c);∀i:ℕk. (↑Inhabited(c i)))
Proof
Definitions occuring in Statement : 
inhabited-rat-cube: Inhabited(c)
, 
rational-cube: ℚCube(k)
, 
inhabited-rat-interval: Inhabited(I)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
assert: ↑b
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
natural_number: $n
Definitions unfolded in proof : 
guard: {T}
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
rational-cube: ℚCube(k)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
inhabited-rat-cube: Inhabited(c)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-nat, 
rational-cube_wf, 
inhabited-rat-cube_wf, 
bdd-all_wf, 
assert-bdd-all, 
istype-assert, 
inhabited-rat-interval_wf, 
assert_witness, 
int_seg_wf
Rules used in proof : 
isectIsTypeImplies, 
isect_memberEquality_alt, 
independent_pairEquality, 
promote_hyp, 
independent_isectElimination, 
productElimination, 
because_Cache, 
functionIsType, 
inhabitedIsType, 
functionIsTypeImplies, 
independent_functionElimination, 
applyEquality, 
dependent_functionElimination, 
lambdaEquality_alt, 
sqequalRule, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
natural_numberEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
universeIsType, 
lambdaFormation_alt, 
independent_pairFormation, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c:\mBbbQ{}Cube(k)].    uiff(\muparrow{}Inhabited(c);\mforall{}i:\mBbbN{}k.  (\muparrow{}Inhabited(c  i)))
Date html generated:
2019_10_29-AM-07_51_43
Last ObjectModification:
2019_10_17-PM-04_38_45
Theory : rationals
Home
Index