Nuprl Lemma : assert-inhabited-rat-cube

[k:ℕ]. ∀[c:ℚCube(k)].  uiff(↑Inhabited(c);∀i:ℕk. (↑Inhabited(c i)))


Proof




Definitions occuring in Statement :  inhabited-rat-cube: Inhabited(c) rational-cube: Cube(k) inhabited-rat-interval: Inhabited(I) int_seg: {i..j-} nat: assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x] apply: a natural_number: $n
Definitions unfolded in proof :  guard: {T} rev_implies:  Q iff: ⇐⇒ Q so_apply: x[s] so_lambda: λ2x.t[x] implies:  Q rational-cube: Cube(k) nat: all: x:A. B[x] uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) inhabited-rat-cube: Inhabited(c) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-nat rational-cube_wf inhabited-rat-cube_wf bdd-all_wf assert-bdd-all istype-assert inhabited-rat-interval_wf assert_witness int_seg_wf
Rules used in proof :  isectIsTypeImplies isect_memberEquality_alt independent_pairEquality promote_hyp independent_isectElimination productElimination because_Cache functionIsType inhabitedIsType functionIsTypeImplies independent_functionElimination applyEquality dependent_functionElimination lambdaEquality_alt sqequalRule hypothesis hypothesisEquality rename setElimination natural_numberEquality thin isectElimination sqequalHypSubstitution extract_by_obid universeIsType lambdaFormation_alt independent_pairFormation cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c:\mBbbQ{}Cube(k)].    uiff(\muparrow{}Inhabited(c);\mforall{}i:\mBbbN{}k.  (\muparrow{}Inhabited(c  i)))



Date html generated: 2019_10_29-AM-07_51_43
Last ObjectModification: 2019_10_17-PM-04_38_45

Theory : rationals


Home Index