Nuprl Lemma : rleq-rat2real

[q1,q2:ℚ].  uiff(rat2real(q1) ≤ rat2real(q2);q1 ≤ q2)


Proof




Definitions occuring in Statement :  rat2real: rat2real(q) rleq: x ≤ y uiff: uiff(P;Q) uall: [x:A]. B[x] qle: r ≤ s rationals:
Definitions unfolded in proof :  guard: {T} rneq: x ≠ y or: P ∨ Q decidable: Dec(P) top: Top false: False satisfiable_int_formula: satisfiable_int_formula(fmla) nequal: a ≠ b ∈  int_nzero: -o rev_implies:  Q bfalse: ff ifthenelse: if then else fi  rat2real: rat2real(q) mk-rational: mk-rational(a;b) le: A ≤ B rnonneg: rnonneg(x) rleq: x ≤ y uiff: uiff(P;Q) uimplies: supposing a prop: and: P ∧ Q iff: ⇐⇒ Q subtype_rel: A ⊆B implies:  Q not: ¬A cand: c∧ B nat_plus: + exists: x:A. B[x] all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  int-rdiv-req rleq_functionality int-rdiv_wf int-to-real_wf rless_wf rless-int rdiv_wf rleq-int-fractions istype-le int_term_value_mul_lemma int_formula_prop_le_lemma itermMultiply_wf intformle_wf decidable__le mk-rational-qdiv istype-less_than int_formula_prop_not_lemma intformnot_wf decidable__lt qle-mk-rational le_wf nequal_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma istype-void int_formula_prop_and_lemma istype-int intformless_wf itermConstant_wf itermVar_wf intformeq_wf intformand_wf full-omega-unsat mk-rational_wf le_witness_for_triv qle_witness qle_wf qdiv_wf rat2real_wf rleq_wf uiff_wf istype-assert assert-qeq int_subtype_base rationals_wf equal-wf-base int-subtype-rationals qeq_wf2 assert_wf iff_weakening_uiff nat_plus_properties q-elim
Rules used in proof :  inrFormation_alt promote_hyp unionElimination multiplyEquality intEquality sqequalBase equalityIstype independent_pairFormation voidElimination int_eqEquality dependent_pairFormation_alt approximateComputation dependent_set_memberEquality_alt universeIsType functionIsTypeImplies equalityTransitivity lambdaEquality_alt inhabitedIsType isectIsTypeImplies isect_memberEquality_alt independent_pairEquality independent_isectElimination applyLambdaEquality equalitySymmetry hyp_replacement baseClosed because_Cache natural_numberEquality sqequalRule applyEquality independent_functionElimination lambdaFormation_alt rename setElimination hypothesis isectElimination productElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[q1,q2:\mBbbQ{}].    uiff(rat2real(q1)  \mleq{}  rat2real(q2);q1  \mleq{}  q2)



Date html generated: 2019_10_29-AM-09_59_21
Last ObjectModification: 2019_10_17-AM-11_35_41

Theory : reals


Home Index