Nuprl Lemma : rleq-rat2real
∀[q1,q2:ℚ].  uiff(rat2real(q1) ≤ rat2real(q2);q1 ≤ q2)
Proof
Definitions occuring in Statement : 
rat2real: rat2real(q)
, 
rleq: x ≤ y
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
qle: r ≤ s
, 
rationals: ℚ
Definitions unfolded in proof : 
guard: {T}
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
top: Top
, 
false: False
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
nequal: a ≠ b ∈ T 
, 
int_nzero: ℤ-o
, 
rev_implies: P 
⇐ Q
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
rat2real: rat2real(q)
, 
mk-rational: mk-rational(a;b)
, 
le: A ≤ B
, 
rnonneg: rnonneg(x)
, 
rleq: x ≤ y
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
prop: ℙ
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
cand: A c∧ B
, 
nat_plus: ℕ+
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
int-rdiv-req, 
rleq_functionality, 
int-rdiv_wf, 
int-to-real_wf, 
rless_wf, 
rless-int, 
rdiv_wf, 
rleq-int-fractions, 
istype-le, 
int_term_value_mul_lemma, 
int_formula_prop_le_lemma, 
itermMultiply_wf, 
intformle_wf, 
decidable__le, 
mk-rational-qdiv, 
istype-less_than, 
int_formula_prop_not_lemma, 
intformnot_wf, 
decidable__lt, 
qle-mk-rational, 
le_wf, 
nequal_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
intformand_wf, 
full-omega-unsat, 
mk-rational_wf, 
le_witness_for_triv, 
qle_witness, 
qle_wf, 
qdiv_wf, 
rat2real_wf, 
rleq_wf, 
uiff_wf, 
istype-assert, 
assert-qeq, 
int_subtype_base, 
rationals_wf, 
equal-wf-base, 
int-subtype-rationals, 
qeq_wf2, 
assert_wf, 
iff_weakening_uiff, 
nat_plus_properties, 
q-elim
Rules used in proof : 
inrFormation_alt, 
promote_hyp, 
unionElimination, 
multiplyEquality, 
intEquality, 
sqequalBase, 
equalityIstype, 
independent_pairFormation, 
voidElimination, 
int_eqEquality, 
dependent_pairFormation_alt, 
approximateComputation, 
dependent_set_memberEquality_alt, 
universeIsType, 
functionIsTypeImplies, 
equalityTransitivity, 
lambdaEquality_alt, 
inhabitedIsType, 
isectIsTypeImplies, 
isect_memberEquality_alt, 
independent_pairEquality, 
independent_isectElimination, 
applyLambdaEquality, 
equalitySymmetry, 
hyp_replacement, 
baseClosed, 
because_Cache, 
natural_numberEquality, 
sqequalRule, 
applyEquality, 
independent_functionElimination, 
lambdaFormation_alt, 
rename, 
setElimination, 
hypothesis, 
isectElimination, 
productElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[q1,q2:\mBbbQ{}].    uiff(rat2real(q1)  \mleq{}  rat2real(q2);q1  \mleq{}  q2)
Date html generated:
2019_10_29-AM-09_59_21
Last ObjectModification:
2019_10_17-AM-11_35_41
Theory : reals
Home
Index