Nuprl Lemma : qdiv_wf

[r,s:ℚ].  (r/s) ∈ ℚ supposing ¬(s 0 ∈ ℚ)


Proof




Definitions occuring in Statement :  qdiv: (r/s) rationals: uimplies: supposing a uall: [x:A]. B[x] not: ¬A member: t ∈ T natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  qdiv: (r/s) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a not: ¬A subtype_rel: A ⊆B uiff: uiff(P;Q) and: P ∧ Q prop:
Lemmas referenced :  qmul_wf qinv_wf assert-qeq int-subtype-rationals assert_wf qeq_wf2 not_wf equal_wf rationals_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis addLevel impliesFunctionality natural_numberEquality applyEquality productElimination because_Cache axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[r,s:\mBbbQ{}].    (r/s)  \mmember{}  \mBbbQ{}  supposing  \mneg{}(s  =  0)



Date html generated: 2016_05_15-PM-10_39_18
Last ObjectModification: 2015_12_27-PM-07_59_14

Theory : rationals


Home Index