Nuprl Lemma : qdiv_wf
∀[r,s:ℚ].  (r/s) ∈ ℚ supposing ¬(s = 0 ∈ ℚ)
Proof
Definitions occuring in Statement : 
qdiv: (r/s)
, 
rationals: ℚ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
member: t ∈ T
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
qdiv: (r/s)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
not: ¬A
, 
subtype_rel: A ⊆r B
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
prop: ℙ
Lemmas referenced : 
qmul_wf, 
qinv_wf, 
assert-qeq, 
int-subtype-rationals, 
assert_wf, 
qeq_wf2, 
not_wf, 
equal_wf, 
rationals_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
addLevel, 
impliesFunctionality, 
natural_numberEquality, 
applyEquality, 
productElimination, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[r,s:\mBbbQ{}].    (r/s)  \mmember{}  \mBbbQ{}  supposing  \mneg{}(s  =  0)
Date html generated:
2016_05_15-PM-10_39_18
Last ObjectModification:
2015_12_27-PM-07_59_14
Theory : rationals
Home
Index