Nuprl Lemma : rat-cube-complex-polyhedron_wf

[k:ℕ]. ∀[K:ℚCube(k) List].  (|K| ∈ Type)


Proof




Definitions occuring in Statement :  rat-cube-complex-polyhedron: |K| list: List nat: uall: [x:A]. B[x] member: t ∈ T universe: Type rational-cube: Cube(k)
Definitions unfolded in proof :  so_apply: x[s1;s2] prop: top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) implies:  Q not: ¬A or: P ∨ Q decidable: Dec(P) all: x:A. B[x] ge: i ≥  nat: squash: T less_than: a < b le: A ≤ B and: P ∧ Q lelt: i ≤ j < k uimplies: supposing a int_seg: {i..j-} so_lambda: λ2y.t[x; y] rat-cube-complex-polyhedron: |K| member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-nat list_wf int_formula_prop_less_lemma intformless_wf istype-le decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma istype-int itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties int_seg_properties select_wf in-rat-cube_wf rational-cube_wf length_wf int_seg_wf real-vec_wf Error :stable-union_wf
Rules used in proof :  inhabitedIsType isectIsTypeImplies equalitySymmetry equalityTransitivity axiomEquality dependent_set_memberEquality_alt universeIsType independent_pairFormation voidElimination isect_memberEquality_alt int_eqEquality dependent_pairFormation_alt independent_functionElimination approximateComputation unionElimination dependent_functionElimination imageElimination productElimination independent_isectElimination rename setElimination lambdaEquality_alt because_Cache natural_numberEquality closedConclusion hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[K:\mBbbQ{}Cube(k)  List].    (|K|  \mmember{}  Type)



Date html generated: 2019_10_30-AM-10_13_06
Last ObjectModification: 2019_10_29-AM-10_26_24

Theory : real!vectors


Home Index