Nuprl Lemma : in-rat-cube_functionality

[k:ℕ]. ∀[p,q:ℝ^k]. ∀[c:ℚCube(k)].  uiff(in-rat-cube(k;p;c);in-rat-cube(k;q;c)) supposing p ≡ q


Proof




Definitions occuring in Statement :  in-rat-cube: in-rat-cube(k;p;c) rn-prod-metric: rn-prod-metric(n) real-vec: ^n meq: x ≡ y nat: uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] rational-cube: Cube(k)
Definitions unfolded in proof :  prop: le: A ≤ B rnonneg: rnonneg(x) rleq: x ≤ y nat: pi2: snd(t) real-vec: ^n pi1: fst(t) rational-interval: Interval implies:  Q rational-cube: Cube(k) guard: {T} cand: c∧ B req-vec: req-vec(n;x;y) all: x:A. B[x] in-rat-cube: in-rat-cube(k;p;c) and: P ∧ Q uiff: uiff(P;Q) uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-nat rational-cube_wf rn-prod-metric_wf real-vec_wf meq_wf in-rat-cube_wf le_witness_for_triv int_seg_wf req_inversion rleq_weakening rat2real_wf rleq_transitivity meq-rn-prod-metric
Rules used in proof :  isectIsTypeImplies isect_memberEquality_alt functionIsTypeImplies independent_pairEquality lambdaEquality_alt rename setElimination natural_numberEquality universeIsType because_Cache independent_functionElimination equalitySymmetry equalityTransitivity equalityIstype sqequalRule inhabitedIsType applyEquality dependent_functionElimination lambdaFormation_alt independent_isectElimination productElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid independent_pairFormation cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[p,q:\mBbbR{}\^{}k].  \mforall{}[c:\mBbbQ{}Cube(k)].    uiff(in-rat-cube(k;p;c);in-rat-cube(k;q;c))  supposing  p  \mequiv{}  q



Date html generated: 2019_10_30-AM-10_12_48
Last ObjectModification: 2019_10_29-AM-11_46_37

Theory : real!vectors


Home Index