Step
*
1
of Lemma
rat-half-cube-diameter
1. k : ℕ
2. c : ℚCube(k)
3. h : ℚCube(k)
4. ∀i:ℕk. (↑is-half-interval(h i;c i))
5. i : ℤ
6. 0 ≤ i
7. i ≤ (k - 1)
⊢ rmax(r0;rat2real(snd((h i))) - rat2real(fst((h i))))
= ((r1/r(2)) * rmax(r0;rat2real(snd((c i))) - rat2real(fst((c i)))))
BY
{ ((D -4 With ⌜i⌝ THENA Auto) THEN MoveToConcl (-1) THEN GenConclTerms Auto [⌜h i⌝;⌜c i⌝]⋅ THEN All Thin) }
1
1. v : ℚInterval
2. v1 : ℚInterval
⊢ (↑is-half-interval(v;v1))
⇒ (rmax(r0;rat2real(snd(v)) - rat2real(fst(v))) = ((r1/r(2)) * rmax(r0;rat2real(snd(v1)) - rat2real(fst(v1)))))
Latex:
Latex:
1. k : \mBbbN{}
2. c : \mBbbQ{}Cube(k)
3. h : \mBbbQ{}Cube(k)
4. \mforall{}i:\mBbbN{}k. (\muparrow{}is-half-interval(h i;c i))
5. i : \mBbbZ{}
6. 0 \mleq{} i
7. i \mleq{} (k - 1)
\mvdash{} rmax(r0;rat2real(snd((h i))) - rat2real(fst((h i))))
= ((r1/r(2)) * rmax(r0;rat2real(snd((c i))) - rat2real(fst((c i)))))
By
Latex:
((D -4 With \mkleeneopen{}i\mkleeneclose{} THENA Auto)
THEN MoveToConcl (-1)
THEN GenConclTerms Auto [\mkleeneopen{}h i\mkleeneclose{};\mkleeneopen{}c i\mkleeneclose{}]\mcdot{}
THEN All Thin)
Home
Index