Nuprl Lemma : rat-half-cube-diameter
∀[k:ℕ]. ∀[c,h:ℚCube(k)].  rat-cube-diameter(k;h) = ((r1/r(2)) * rat-cube-diameter(k;c)) supposing ↑is-half-cube(k;h;c)
Proof
Definitions occuring in Statement : 
rat-cube-diameter: rat-cube-diameter(k;c)
, 
rdiv: (x/y)
, 
req: x = y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
nat: ℕ
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
, 
is-half-cube: is-half-cube(k;h;c)
, 
rational-cube: ℚCube(k)
Definitions unfolded in proof : 
req_int_terms: t1 ≡ t2
, 
ifthenelse: if b then t else f fi 
, 
band: p ∧b q
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
rtermAdd: left "+" right
, 
rtermConstant: "const"
, 
rtermVar: rtermVar(var)
, 
rtermSubtract: left "-" right
, 
rtermDivide: num "/" denom
, 
rat_term_ind: rat_term_ind, 
rtermMultiply: left "*" right
, 
rat_term_to_real: rat_term_to_real(f;t)
, 
nat_plus: ℕ+
, 
is-half-interval: is-half-interval(I;J)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
pointwise-req: x[k] = y[k] for k ∈ [n,m]
, 
so_apply: x[s]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
rational-interval: ℚInterval
, 
top: Top
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
rational-cube: ℚCube(k)
, 
le: A ≤ B
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
prop: ℙ
, 
true: True
, 
less_than': less_than'(a;b)
, 
squash: ↓T
, 
less_than: a < b
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
guard: {T}
, 
rneq: x ≠ y
, 
rat-cube-diameter: rat-cube-diameter(k;c)
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
real_term_value_var_lemma, 
real_term_value_mul_lemma, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_polynomial_null, 
rat2real-qavg, 
rsub_functionality, 
rmul-rmax, 
real_wf, 
true_wf, 
squash_wf, 
uiff_transitivity, 
assert_of_band, 
assert_of_bor, 
iff_weakening_uiff, 
iff_transitivity, 
rationals_wf, 
equal_wf, 
bfalse_wf, 
assert-qeq, 
btrue_wf, 
band_wf, 
eqtt_to_assert, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases, 
qeq_wf2, 
bor_wf, 
assert_wf, 
req-iff-rsub-is-0, 
itermMultiply_wf, 
rtermMultiply_wf, 
rtermConstant_wf, 
rtermVar_wf, 
rtermAdd_wf, 
rtermDivide_wf, 
rtermSubtract_wf, 
assert-rat-term-eq2, 
rmax_functionality, 
istype-false, 
rleq-int-fractions2, 
qavg_wf, 
radd_wf, 
req_wf, 
rsum_linearity2, 
req_inversion, 
req_weakening, 
req_functionality, 
rsum_functionality, 
int_seg_wf, 
istype-less_than, 
istype-le, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
int_formula_prop_less_lemma, 
itermSubtract_wf, 
itermAdd_wf, 
intformless_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_properties, 
int_seg_properties, 
rat2real_wf, 
rsub_wf, 
rmax_wf, 
subtract_wf, 
rsum_wf, 
istype-nat, 
rational-cube_wf, 
is-half-cube_wf, 
istype-assert, 
rless_wf, 
rless-int, 
int-to-real_wf, 
rdiv_wf, 
rmul_wf, 
rat-cube-diameter_wf, 
req_witness, 
assert-is-half-cube
Rules used in proof : 
promote_hyp, 
inlFormation_alt, 
unionIsType, 
productEquality, 
unionEquality, 
cumulativity, 
instantiate, 
addEquality, 
equalitySymmetry, 
equalityTransitivity, 
equalityIstype, 
lambdaFormation_alt, 
productIsType, 
voidElimination, 
int_eqEquality, 
dependent_pairFormation_alt, 
approximateComputation, 
unionElimination, 
imageElimination, 
dependent_set_memberEquality_alt, 
applyEquality, 
lambdaEquality_alt, 
rename, 
setElimination, 
inhabitedIsType, 
isectIsTypeImplies, 
isect_memberEquality_alt, 
universeIsType, 
baseClosed, 
imageMemberEquality, 
independent_pairFormation, 
independent_functionElimination, 
because_Cache, 
dependent_functionElimination, 
inrFormation_alt, 
sqequalRule, 
natural_numberEquality, 
closedConclusion, 
independent_isectElimination, 
productElimination, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c,h:\mBbbQ{}Cube(k)].
    rat-cube-diameter(k;h)  =  ((r1/r(2))  *  rat-cube-diameter(k;c))  supposing  \muparrow{}is-half-cube(k;h;c)
Date html generated:
2019_10_31-AM-06_03_30
Last ObjectModification:
2019_10_31-AM-00_00_48
Theory : real!vectors
Home
Index