Nuprl Lemma : rat-half-cube-diameter

[k:ℕ]. ∀[c,h:ℚCube(k)].  rat-cube-diameter(k;h) ((r1/r(2)) rat-cube-diameter(k;c)) supposing ↑is-half-cube(k;h;c)


Proof




Definitions occuring in Statement :  rat-cube-diameter: rat-cube-diameter(k;c) rdiv: (x/y) req: y rmul: b int-to-real: r(n) nat: assert: b uimplies: supposing a uall: [x:A]. B[x] natural_number: $n is-half-cube: is-half-cube(k;h;c) rational-cube: Cube(k)
Definitions unfolded in proof :  req_int_terms: t1 ≡ t2 ifthenelse: if then else fi  band: p ∧b q bfalse: ff sq_type: SQType(T) rtermAdd: left "+" right rtermConstant: "const" rtermVar: rtermVar(var) rtermSubtract: left "-" right rtermDivide: num "/" denom rat_term_ind: rat_term_ind rtermMultiply: left "*" right rat_term_to_real: rat_term_to_real(f;t) nat_plus: + is-half-interval: is-half-interval(I;J) rev_uimplies: rev_uimplies(P;Q) pointwise-req: x[k] y[k] for k ∈ [n,m] so_apply: x[s] pi1: fst(t) pi2: snd(t) rational-interval: Interval top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A decidable: Dec(P) ge: i ≥  rational-cube: Cube(k) le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} so_lambda: λ2x.t[x] nat: prop: true: True less_than': less_than'(a;b) squash: T less_than: a < b implies:  Q rev_implies:  Q iff: ⇐⇒ Q all: x:A. B[x] or: P ∨ Q guard: {T} rneq: x ≠ y rat-cube-diameter: rat-cube-diameter(k;c) and: P ∧ Q uiff: uiff(P;Q) uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  real_term_value_var_lemma real_term_value_mul_lemma real_term_value_const_lemma real_term_value_sub_lemma real_polynomial_null rat2real-qavg rsub_functionality rmul-rmax real_wf true_wf squash_wf uiff_transitivity assert_of_band assert_of_bor iff_weakening_uiff iff_transitivity rationals_wf equal_wf bfalse_wf assert-qeq btrue_wf band_wf eqtt_to_assert bool_subtype_base bool_wf subtype_base_sq bool_cases qeq_wf2 bor_wf assert_wf req-iff-rsub-is-0 itermMultiply_wf rtermMultiply_wf rtermConstant_wf rtermVar_wf rtermAdd_wf rtermDivide_wf rtermSubtract_wf assert-rat-term-eq2 rmax_functionality istype-false rleq-int-fractions2 qavg_wf radd_wf req_wf rsum_linearity2 req_inversion req_weakening req_functionality rsum_functionality int_seg_wf istype-less_than istype-le int_term_value_subtract_lemma int_term_value_add_lemma int_formula_prop_less_lemma itermSubtract_wf itermAdd_wf intformless_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma istype-int itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties int_seg_properties rat2real_wf rsub_wf rmax_wf subtract_wf rsum_wf istype-nat rational-cube_wf is-half-cube_wf istype-assert rless_wf rless-int int-to-real_wf rdiv_wf rmul_wf rat-cube-diameter_wf req_witness assert-is-half-cube
Rules used in proof :  promote_hyp inlFormation_alt unionIsType productEquality unionEquality cumulativity instantiate addEquality equalitySymmetry equalityTransitivity equalityIstype lambdaFormation_alt productIsType voidElimination int_eqEquality dependent_pairFormation_alt approximateComputation unionElimination imageElimination dependent_set_memberEquality_alt applyEquality lambdaEquality_alt rename setElimination inhabitedIsType isectIsTypeImplies isect_memberEquality_alt universeIsType baseClosed imageMemberEquality independent_pairFormation independent_functionElimination because_Cache dependent_functionElimination inrFormation_alt sqequalRule natural_numberEquality closedConclusion independent_isectElimination productElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c,h:\mBbbQ{}Cube(k)].
    rat-cube-diameter(k;h)  =  ((r1/r(2))  *  rat-cube-diameter(k;c))  supposing  \muparrow{}is-half-cube(k;h;c)



Date html generated: 2019_10_31-AM-06_03_30
Last ObjectModification: 2019_10_31-AM-00_00_48

Theory : real!vectors


Home Index