Nuprl Lemma : assert-is-half-cube
∀[k:ℕ]. ∀[h,c:ℚCube(k)].  uiff(↑is-half-cube(k;h;c);∀i:ℕk. (↑is-half-interval(h i;c i)))
Proof
Definitions occuring in Statement : 
is-half-cube: is-half-cube(k;h;c), 
is-half-interval: is-half-interval(I;J), 
rational-cube: ℚCube(k), 
int_seg: {i..j-}, 
nat: ℕ, 
assert: ↑b, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
apply: f a, 
natural_number: $n
Definitions unfolded in proof : 
guard: {T}, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
implies: P ⇒ Q, 
rational-cube: ℚCube(k), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
and: P ∧ Q, 
uiff: uiff(P;Q), 
is-half-cube: is-half-cube(k;h;c)
Lemmas referenced : 
istype-nat, 
rational-cube_wf, 
is-half-cube_wf, 
bdd-all_wf, 
assert-bdd-all, 
istype-assert, 
is-half-interval_wf, 
assert_witness, 
int_seg_wf
Rules used in proof : 
isectIsTypeImplies, 
isect_memberEquality_alt, 
independent_pairEquality, 
promote_hyp, 
independent_isectElimination, 
productElimination, 
because_Cache, 
functionIsType, 
inhabitedIsType, 
functionIsTypeImplies, 
independent_functionElimination, 
applyEquality, 
dependent_functionElimination, 
lambdaEquality_alt, 
sqequalRule, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
natural_numberEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
universeIsType, 
lambdaFormation_alt, 
introduction, 
isect_memberFormation_alt, 
independent_pairFormation, 
cut, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[h,c:\mBbbQ{}Cube(k)].    uiff(\muparrow{}is-half-cube(k;h;c);\mforall{}i:\mBbbN{}k.  (\muparrow{}is-half-interval(h  i;c  i)))
Date html generated:
2019_10_29-AM-07_50_59
Last ObjectModification:
2019_10_21-PM-01_14_18
Theory : rationals
Home
Index