Nuprl Lemma : is-half-interval_wf
∀[I,J:ℚInterval].  (is-half-interval(I;J) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
is-half-interval: is-half-interval(I;J), 
rational-interval: ℚInterval, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
ifthenelse: if b then t else f fi , 
band: p ∧b q, 
bfalse: ff, 
and: P ∧ Q, 
uiff: uiff(P;Q), 
guard: {T}, 
implies: P ⇒ Q, 
sq_type: SQType(T), 
uimplies: b supposing a, 
or: P ∨ Q, 
all: ∀x:A. B[x], 
rational-interval: ℚInterval, 
is-half-interval: is-half-interval(I;J), 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rational-interval_wf, 
bfalse_wf, 
qavg_wf, 
assert-qeq, 
btrue_wf, 
band_wf, 
eqtt_to_assert, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases, 
qeq_wf2, 
bor_wf
Rules used in proof : 
universeIsType, 
isectIsTypeImplies, 
isect_memberEquality_alt, 
inhabitedIsType, 
axiomEquality, 
independent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
independent_isectElimination, 
cumulativity, 
instantiate, 
unionElimination, 
dependent_functionElimination, 
hypothesis, 
isectElimination, 
extract_by_obid, 
hypothesisEquality, 
independent_pairEquality, 
thin, 
productElimination, 
sqequalHypSubstitution, 
spreadEquality, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[I,J:\mBbbQ{}Interval].    (is-half-interval(I;J)  \mmember{}  \mBbbB{})
Date html generated:
2019_10_29-AM-07_50_34
Last ObjectModification:
2019_10_21-PM-00_49_30
Theory : rationals
Home
Index