Nuprl Lemma : is-half-cube_wf
∀[k:ℕ]. ∀[h,c:ℚCube(k)].  (is-half-cube(k;h;c) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
is-half-cube: is-half-cube(k;h;c)
, 
rational-cube: ℚCube(k)
, 
nat: ℕ
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
so_apply: x[s]
, 
nat: ℕ
, 
rational-cube: ℚCube(k)
, 
so_lambda: λ2x.t[x]
, 
is-half-cube: is-half-cube(k;h;c)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-nat, 
rational-cube_wf, 
int_seg_wf, 
is-half-interval_wf, 
bdd-all_wf
Rules used in proof : 
isectIsTypeImplies, 
isect_memberEquality_alt, 
inhabitedIsType, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
rename, 
setElimination, 
natural_numberEquality, 
universeIsType, 
hypothesis, 
applyEquality, 
lambdaEquality_alt, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[h,c:\mBbbQ{}Cube(k)].    (is-half-cube(k;h;c)  \mmember{}  \mBbbB{})
Date html generated:
2019_10_29-AM-07_50_53
Last ObjectModification:
2019_10_21-PM-00_52_10
Theory : rationals
Home
Index