Nuprl Lemma : is-half-cube_wf

[k:ℕ]. ∀[h,c:ℚCube(k)].  (is-half-cube(k;h;c) ∈ 𝔹)


Proof




Definitions occuring in Statement :  is-half-cube: is-half-cube(k;h;c) rational-cube: Cube(k) nat: bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] nat: rational-cube: Cube(k) so_lambda: λ2x.t[x] is-half-cube: is-half-cube(k;h;c) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-nat rational-cube_wf int_seg_wf is-half-interval_wf bdd-all_wf
Rules used in proof :  isectIsTypeImplies isect_memberEquality_alt inhabitedIsType equalitySymmetry equalityTransitivity axiomEquality rename setElimination natural_numberEquality universeIsType hypothesis applyEquality lambdaEquality_alt hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[h,c:\mBbbQ{}Cube(k)].    (is-half-cube(k;h;c)  \mmember{}  \mBbbB{})



Date html generated: 2019_10_29-AM-07_50_53
Last ObjectModification: 2019_10_21-PM-00_52_10

Theory : rationals


Home Index