Nuprl Lemma : rsub_functionality
∀[x1,x2,y1,y2:ℝ].  ((x1 - y1) = (x2 - y2)) supposing ((y1 = y2) and (x1 = x2))
Proof
Definitions occuring in Statement : 
rsub: x - y
, 
req: x = y
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
rsub: x - y
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req_witness, 
rsub_wf, 
req_wf, 
real_wf, 
radd_wf, 
rminus_wf, 
req_weakening, 
req_functionality, 
radd_functionality, 
rminus_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
productElimination
Latex:
\mforall{}[x1,x2,y1,y2:\mBbbR{}].    ((x1  -  y1)  =  (x2  -  y2))  supposing  ((y1  =  y2)  and  (x1  =  x2))
Date html generated:
2016_05_18-AM-06_55_09
Last ObjectModification:
2015_12_28-AM-00_31_35
Theory : reals
Home
Index