Nuprl Lemma : rat-cube-diameter_wf

[k:ℕ]. ∀[c:ℚCube(k)].  (rat-cube-diameter(k;c) ∈ ℝ)


Proof




Definitions occuring in Statement :  rat-cube-diameter: rat-cube-diameter(k;c) real: nat: uall: [x:A]. B[x] member: t ∈ T rational-cube: Cube(k)
Definitions unfolded in proof :  so_apply: x[s] pi1: fst(t) pi2: snd(t) rational-interval: Interval prop: top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) implies:  Q not: ¬A uimplies: supposing a or: P ∨ Q decidable: Dec(P) all: x:A. B[x] ge: i ≥  squash: T less_than: a < b rational-cube: Cube(k) le: A ≤ B and: P ∧ Q lelt: i ≤ j < k int_seg: {i..j-} so_lambda: λ2x.t[x] nat: rat-cube-diameter: rat-cube-diameter(k;c) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-nat rational-cube_wf int_seg_wf istype-less_than istype-le int_term_value_subtract_lemma int_term_value_add_lemma int_formula_prop_less_lemma itermSubtract_wf itermAdd_wf intformless_wf decidable__lt int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma istype-int itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties int_seg_properties rat2real_wf rsub_wf int-to-real_wf rmax_wf subtract_wf rsum_wf
Rules used in proof :  isectIsTypeImplies axiomEquality addEquality because_Cache equalitySymmetry equalityTransitivity equalityIstype lambdaFormation_alt inhabitedIsType productIsType universeIsType voidElimination isect_memberEquality_alt int_eqEquality dependent_pairFormation_alt independent_functionElimination approximateComputation independent_isectElimination unionElimination dependent_functionElimination independent_pairFormation imageElimination dependent_set_memberEquality_alt applyEquality productElimination lambdaEquality_alt hypothesis hypothesisEquality rename setElimination natural_numberEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c:\mBbbQ{}Cube(k)].    (rat-cube-diameter(k;c)  \mmember{}  \mBbbR{})



Date html generated: 2019_10_31-AM-06_03_16
Last ObjectModification: 2019_10_30-PM-11_45_14

Theory : real!vectors


Home Index