Step
*
1
1
of Lemma
real-ball-slice_wf
1. n : ℕ+
2. t : ℝ
3. i : ℕn
4. p : ℝ^n - 1
5. λj.if j <z i then p j
if i <z j then p (j - 1)
else t
fi ∈ ℝ^n
6. ∀[x,y:ℝ^n]. (x⋅y = (x⋅y + λi@0.(x (i + i@0))⋅λi@0.(y (i + i@0))))
⊢ (λj.if j <z i then p j
if i <z j then p (j - 1)
else t
fi ⋅λj.if j <z i then p j
if i <z j then p (j - 1)
else t
fi
+ λi@0.((λj.if j <z i then p j if i <z j then p (j - 1) else t fi ) (i + i@0))⋅λi@0.((λj.if j <z i then p j
if i <z j then p (j - 1)
else t
fi )
(i + i@0)))
= (p⋅p + t^2)
BY
{ (Reduce 0
THEN (Assert req-vec(i;λj.if j <z i then p j
if i <z j then p (j - 1)
else t
fi ;p) BY
((D 0 THENA Auto) THEN Reduce 0 THEN AutoSplit))
) }
1
1. n : ℕ+
2. t : ℝ
3. i : ℕn
4. p : ℝ^n - 1
5. λj.if j <z i then p j
if i <z j then p (j - 1)
else t
fi ∈ ℝ^n
6. ∀[x,y:ℝ^n]. (x⋅y = (x⋅y + λi@0.(x (i + i@0))⋅λi@0.(y (i + i@0))))
7. req-vec(i;λj.if j <z i then p j
if i <z j then p (j - 1)
else t
fi ;p)
⊢ (λj.if j <z i then p j
if i <z j then p (j - 1)
else t
fi ⋅λj.if j <z i then p j
if i <z j then p (j - 1)
else t
fi
+ λi@0.if i + i@0 <z i then p (i + i@0)
if i <z i + i@0 then p ((i + i@0) - 1)
else t
fi ⋅λi@0.if i + i@0 <z i then p (i + i@0)
if i <z i + i@0 then p ((i + i@0) - 1)
else t
fi )
= (p⋅p + t^2)
Latex:
Latex:
1. n : \mBbbN{}\msupplus{}
2. t : \mBbbR{}
3. i : \mBbbN{}n
4. p : \mBbbR{}\^{}n - 1
5. \mlambda{}j.if j <z i then p j
if i <z j then p (j - 1)
else t
fi \mmember{} \mBbbR{}\^{}n
6. \mforall{}[x,y:\mBbbR{}\^{}n]. (x\mcdot{}y = (x\mcdot{}y + \mlambda{}i@0.(x (i + i@0))\mcdot{}\mlambda{}i@0.(y (i + i@0))))
\mvdash{} (\mlambda{}j.if j <z i then p j
if i <z j then p (j - 1)
else t
fi \mcdot{}\mlambda{}j.if j <z i then p j
if i <z j then p (j - 1)
else t
fi
+ \mlambda{}i@0.((\mlambda{}j.if j <z i then p j if i <z j then p (j - 1) else t fi ) (i + i@0))\mcdot{}\mlambda{}i@0.((\mlambda{}j.if j <z i
then p j
if i <z j
then p
(j
- 1)
else t
fi )
(i + i@0)))
= (p\mcdot{}p + t\^{}2)
By
Latex:
(Reduce 0
THEN (Assert req-vec(i;\mlambda{}j.if j <z i then p j
if i <z j then p (j - 1)
else t
fi ;p) BY
((D 0 THENA Auto) THEN Reduce 0 THEN AutoSplit))
)
Home
Index