Nuprl Lemma : real-ball-slice_wf

[r:{r:ℝr0 ≤ r} ]
  ∀n:ℕ+. ∀t:{t:ℝt ∈ [-(r), r]} . ∀i:ℕn. ∀p:B(n 1;ball-slice-radius(r;t)).  (real-ball-slice(p;i;t) ∈ B(n;r))


Proof




Definitions occuring in Statement :  real-ball-slice: real-ball-slice(p;i;t) ball-slice-radius: ball-slice-radius(r;t) real-ball: B(n;r) rccint: [l, u] i-member: r ∈ I rleq: x ≤ y rminus: -(x) int-to-real: r(n) real: int_seg: {i..j-} nat_plus: + uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T set: {x:A| B[x]}  subtract: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] real-vec: ^n int_seg: {i..j-} implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a real-ball: B(n;r) lelt: i ≤ j < k le: A ≤ B less_than: a < b squash: T nat_plus: + decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q real-ball-slice: real-ball-slice(p;i;t) nat: sq_stable: SqStable(P) subtype_rel: A ⊆B less_than': less_than'(a;b) rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y req-vec: req-vec(n;x;y) cand: c∧ B subtract: m true: True nequal: a ≠ b ∈  dot-product: x⋅y so_lambda: λ2x.t[x] so_apply: x[s] eq_int: (i =z j) req_int_terms: t1 ≡ t2
Lemmas referenced :  lt_int_wf eqtt_to_assert assert_of_lt_int int_seg_properties nat_plus_properties decidable__lt subtract_wf full-omega-unsat intformand_wf intformnot_wf intformless_wf itermVar_wf itermSubtract_wf itermConstant_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_wf istype-le istype-less_than eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf decidable__le intformle_wf int_formula_prop_le_lemma member_rccint_lemma square-rleq-implies real-vec-norm_wf sq_stable__rleq int-to-real_wf rleq_wf real-ball_wf ball-slice-radius_wf int_seg_wf real_wf i-member_wf rccint_wf rminus_wf nat_plus_wf rnexp_wf dot-product_wf nat_plus_subtype_nat real-vec-norm-nonneg rleq_weakening_equal radd_wf rleq_weakening rleq_functionality real-vec-norm-squared req_weakening rleq_functionality_wrt_implies rnexp_functionality_wrt_rleq radd_functionality_wrt_rleq dot-product-split add-member-int_seg1 itermAdd_wf int_term_value_add_lemma req_functionality real-vec-subtype subtype_rel_function int_seg_subtype istype-false not-le-2 condition-implies-le minus-one-mul minus-add minus-minus add-associates add-swap minus-one-mul-top add-commutes zero-add sq_stable__le less-iff-le add_functionality_wrt_le le-add-cancel subtype_rel_self int_seg_subtype_nat radd_functionality dot-product_functionality eq_int_wf assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma neg_assert_of_eq_int decidable__equal_int int_subtype_base trivial-int-eq1 rsum_wf rmul_wf equal-wf-base rmul_comm dot-product-comm rsum-single rnexp2 radd-preserves-req itermMinus_wf req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_add_lemma real_term_value_minus_lemma real_term_value_var_lemma real_term_value_const_lemma dot-product-split-first ifthenelse_wf radd_comm
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt functionExtensionality sqequalRule sqequalHypSubstitution setElimination thin rename because_Cache hypothesis extract_by_obid isectElimination inhabitedIsType unionElimination equalityElimination productElimination independent_isectElimination applyEquality dependent_set_memberEquality_alt hypothesisEquality independent_pairFormation imageElimination dependent_functionElimination natural_numberEquality approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination universeIsType productIsType equalityTransitivity equalitySymmetry equalityIstype promote_hyp instantiate cumulativity imageMemberEquality baseClosed setIsType axiomEquality functionIsTypeImplies addEquality closedConclusion minusEquality intEquality sqequalBase

Latex:
\mforall{}[r:\{r:\mBbbR{}|  r0  \mleq{}  r\}  ]
    \mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}t:\{t:\mBbbR{}|  t  \mmember{}  [-(r),  r]\}  .  \mforall{}i:\mBbbN{}n.  \mforall{}p:B(n  -  1;ball-slice-radius(r;t)).
        (real-ball-slice(p;i;t)  \mmember{}  B(n;r))



Date html generated: 2019_10_30-AM-10_15_06
Last ObjectModification: 2019_06_28-PM-01_52_15

Theory : real!vectors


Home Index