Nuprl Lemma : dot-product-split-first
∀[n:ℕ+]. ∀[x,y:ℝ^n].  (x⋅y = (((x 0) * (y 0)) + λi.(x (i + 1))⋅λi.(y (i + 1))))
Proof
Definitions occuring in Statement : 
dot-product: x⋅y
, 
real-vec: ℝ^n
, 
req: x = y
, 
rmul: a * b
, 
radd: a + b
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
lambda: λx.A[x]
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
nat: ℕ
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
real-vec: ℝ^n
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than: a < b
, 
sq_type: SQType(T)
, 
guard: {T}
, 
dot-product: x⋅y
, 
subtract: n - m
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uiff: uiff(P;Q)
, 
subtype_rel: A ⊆r B
, 
less_than': less_than'(a;b)
, 
true: True
, 
rev_uimplies: rev_uimplies(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
req-vec: req-vec(n;x;y)
Lemmas referenced : 
sq_stable__req, 
real-vec_wf, 
nat_plus_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
istype-le, 
nat_plus_wf, 
dot-product_wf, 
radd_wf, 
rmul_wf, 
decidable__lt, 
istype-less_than, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
int_seg_properties, 
itermAdd_wf, 
int_term_value_add_lemma, 
int_seg_wf, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
rsum_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
add-member-int_seg2, 
rsum-empty, 
int-to-real_wf, 
itermMultiply_wf, 
req-iff-rsub-is-0, 
req_functionality, 
rsum-single, 
req_weakening, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_add_lemma, 
real_term_value_const_lemma, 
dot-product-split, 
nat_plus_subtype_nat, 
real-vec-subtype, 
radd_functionality, 
dot-product_functionality, 
add-commutes
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
imageElimination, 
because_Cache, 
universeIsType, 
dependent_set_memberEquality_alt, 
setElimination, 
rename, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
applyEquality, 
productIsType, 
addEquality, 
productElimination, 
instantiate, 
cumulativity, 
intEquality, 
closedConclusion, 
minusEquality, 
setIsType, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
equalityIstype, 
baseApply, 
sqequalBase, 
lambdaFormation_alt
Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[x,y:\mBbbR{}\^{}n].    (x\mcdot{}y  =  (((x  0)  *  (y  0))  +  \mlambda{}i.(x  (i  +  1))\mcdot{}\mlambda{}i.(y  (i  +  1))))
Date html generated:
2019_10_30-AM-08_06_15
Last ObjectModification:
2019_07_01-AM-10_46_09
Theory : reals
Home
Index