Nuprl Lemma : rsum-empty

[n,m:ℤ]. ∀[x:Top].  Σ{x[i] n≤i≤m} r0 supposing m < n


Proof




Definitions occuring in Statement :  rsum: Σ{x[k] n≤k≤m} int-to-real: r(n) less_than: a < b uimplies: supposing a uall: [x:A]. B[x] top: Top so_apply: x[s] natural_number: $n int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a rsum: Σ{x[k] n≤k≤m} has-value: (a)↓ all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top and: P ∧ Q prop: callbyvalueall: callbyvalueall evalall: evalall(t) map: map(f;as) list_ind: list_ind nil: [] it:
Lemmas referenced :  top_wf less_than_wf radd_list_nil_lemma map_nil_lemma int_formula_prop_wf int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermConstant_wf itermVar_wf itermAdd_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le from-upto-nil int-value-type value-type-has-value
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule callbyvalueReduce lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality independent_isectElimination hypothesis hypothesisEquality because_Cache addEquality natural_numberEquality dependent_functionElimination unionElimination dependent_pairFormation lambdaEquality int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll sqleReflexivity sqequalAxiom equalityTransitivity equalitySymmetry

Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[x:Top].    \mSigma{}\{x[i]  |  n\mleq{}i\mleq{}m\}  \msim{}  r0  supposing  m  <  n



Date html generated: 2016_05_18-AM-07_46_08
Last ObjectModification: 2016_01_17-AM-02_08_42

Theory : reals


Home Index