Nuprl Lemma : rsum-empty
∀[n,m:ℤ]. ∀[x:Top].  Σ{x[i] | n≤i≤m} ~ r0 supposing m < n
Proof
Definitions occuring in Statement : 
rsum: Σ{x[k] | n≤k≤m}
, 
int-to-real: r(n)
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
natural_number: $n
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
rsum: Σ{x[k] | n≤k≤m}
, 
has-value: (a)↓
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t)
, 
map: map(f;as)
, 
list_ind: list_ind, 
nil: []
, 
it: ⋅
Lemmas referenced : 
top_wf, 
less_than_wf, 
radd_list_nil_lemma, 
map_nil_lemma, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
from-upto-nil, 
int-value-type, 
value-type-has-value
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
callbyvalueReduce, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
independent_isectElimination, 
hypothesis, 
hypothesisEquality, 
because_Cache, 
addEquality, 
natural_numberEquality, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
sqleReflexivity, 
sqequalAxiom, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[x:Top].    \mSigma{}\{x[i]  |  n\mleq{}i\mleq{}m\}  \msim{}  r0  supposing  m  <  n
Date html generated:
2016_05_18-AM-07_46_08
Last ObjectModification:
2016_01_17-AM-02_08_42
Theory : reals
Home
Index