Nuprl Lemma : rsum-single

[n:ℤ]. ∀[x:{i:ℤn ∈ ℤ}  ⟶ ℝ].  {x[i] n≤i≤n} x[n])


Proof




Definitions occuring in Statement :  rsum: Σ{x[k] n≤k≤m} req: y real: uall: [x:A]. B[x] so_apply: x[s] set: {x:A| B[x]}  function: x:A ⟶ B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rsum: Σ{x[k] n≤k≤m} has-value: (a)↓ uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] prop: subtype_rel: A ⊆B int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q all: x:A. B[x] implies:  Q guard: {T} decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top callbyvalueall: callbyvalueall has-valueall: has-valueall(a) uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  value-type-has-value int-value-type req_witness rsum_wf equal-wf-base subtype_rel_sets lelt_wf int_subtype_base int_seg_properties decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf intformless_wf itermAdd_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf int_seg_wf real_wf from-upto-single map_cons_lemma map_nil_lemma valueall-type-has-valueall list_wf list-valueall-type real-valueall-type cons_wf nil_wf evalall-reduce valueall-type-real-list radd-list_wf-bag list-subtype-bag subtype_rel_self radd_wf radd_list_nil_lemma req_wf int-to-real_wf req_weakening req_functionality radd-list-cons uiff_transitivity radd_comm radd-zero-both
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule callbyvalueReduce extract_by_obid sqequalHypSubstitution isectElimination thin intEquality independent_isectElimination hypothesis hypothesisEquality because_Cache lambdaEquality applyEquality functionExtensionality setEquality addEquality natural_numberEquality setElimination rename lambdaFormation productElimination applyLambdaEquality dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll dependent_set_memberEquality independent_functionElimination functionEquality

Latex:
\mforall{}[n:\mBbbZ{}].  \mforall{}[x:\{i:\mBbbZ{}|  i  =  n\}    {}\mrightarrow{}  \mBbbR{}].    (\mSigma{}\{x[i]  |  n\mleq{}i\mleq{}n\}  =  x[n])



Date html generated: 2017_10_03-AM-08_58_20
Last ObjectModification: 2017_07_28-AM-07_38_06

Theory : reals


Home Index