Nuprl Lemma : rsum-single
∀[n:ℤ]. ∀[x:{i:ℤ| i = n ∈ ℤ}  ⟶ ℝ].  (Σ{x[i] | n≤i≤n} = x[n])
Proof
Definitions occuring in Statement : 
rsum: Σ{x[k] | n≤k≤m}
, 
req: x = y
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rsum: Σ{x[k] | n≤k≤m}
, 
has-value: (a)↓
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
callbyvalueall: callbyvalueall, 
has-valueall: has-valueall(a)
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
value-type-has-value, 
int-value-type, 
req_witness, 
rsum_wf, 
equal-wf-base, 
subtype_rel_sets, 
lelt_wf, 
int_subtype_base, 
int_seg_properties, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
intformless_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
int_seg_wf, 
real_wf, 
from-upto-single, 
map_cons_lemma, 
map_nil_lemma, 
valueall-type-has-valueall, 
list_wf, 
list-valueall-type, 
real-valueall-type, 
cons_wf, 
nil_wf, 
evalall-reduce, 
valueall-type-real-list, 
radd-list_wf-bag, 
list-subtype-bag, 
subtype_rel_self, 
radd_wf, 
radd_list_nil_lemma, 
req_wf, 
int-to-real_wf, 
req_weakening, 
req_functionality, 
radd-list-cons, 
uiff_transitivity, 
radd_comm, 
radd-zero-both
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
callbyvalueReduce, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
independent_isectElimination, 
hypothesis, 
hypothesisEquality, 
because_Cache, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
setEquality, 
addEquality, 
natural_numberEquality, 
setElimination, 
rename, 
lambdaFormation, 
productElimination, 
applyLambdaEquality, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
dependent_set_memberEquality, 
independent_functionElimination, 
functionEquality
Latex:
\mforall{}[n:\mBbbZ{}].  \mforall{}[x:\{i:\mBbbZ{}|  i  =  n\}    {}\mrightarrow{}  \mBbbR{}].    (\mSigma{}\{x[i]  |  n\mleq{}i\mleq{}n\}  =  x[n])
Date html generated:
2017_10_03-AM-08_58_20
Last ObjectModification:
2017_07_28-AM-07_38_06
Theory : reals
Home
Index