Nuprl Lemma : radd-list-cons

[L:ℝ List]. ∀[x:ℝ].  (radd-list([x L]) (x radd-list(L)))


Proof




Definitions occuring in Statement :  req: y radd: b radd-list: radd-list(L) real: cons: [a b] list: List uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q radd: b implies:  Q real: nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True prop: all: x:A. B[x] top: Top guard: {T} iff: ⇐⇒ Q rev_implies:  Q radd-list: radd-list(L) callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) nat: so_lambda: λ2x.t[x] so_apply: x[s] bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A bfalse: ff or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b ge: i ≥  nequal: a ≠ b ∈  le: A ≤ B decidable: Dec(P) int-to-real: r(n) cons: [a b]
Lemmas referenced :  req-iff-bdd-diff radd-list_wf-bag cons_wf real_wf list-subtype-bag subtype_rel_self radd_wf req_witness list_wf accelerate_wf less_than_wf reg-seq-list-add_wf nil_wf length_of_cons_lemma length_of_nil_lemma nat_plus_wf regular-int-seq_wf length_wf bdd-diff_wf squash_wf true_wf reg-seq-list-add-as-l_sum iff_weakening_equal map_cons_lemma map_nil_lemma l_sum_cons_lemma l_sum_nil_lemma bdd-diff_functionality bdd-diff_weakening accelerate-bdd-diff valueall-type-has-valueall list-valueall-type real-valueall-type evalall-reduce valueall-type-real-list value-type-has-value int-value-type nat_wf set-value-type le_wf length_wf_nat eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf itermConstant_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_term_value_add_lemma int_formula_prop_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int non_neg_length intformle_wf int_formula_prop_le_lemma add_nat_plus nat_plus_properties decidable__lt add-is-int-iff intformnot_wf intformless_wf int_formula_prop_not_lemma int_formula_prop_less_lemma false_wf int-to-real_wf list-cases decidable__equal_int itermMultiply_wf int_term_value_mul_lemma product_subtype_list bdd-diff-add add-commutes add-associates subtype_rel_list l_sum_wf map_wf add_functionality_wrt_eq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality applyEquality because_Cache independent_isectElimination sqequalRule productElimination independent_functionElimination isect_memberEquality lambdaEquality setElimination rename dependent_set_memberEquality natural_numberEquality independent_pairFormation imageMemberEquality baseClosed dependent_functionElimination voidElimination voidEquality setEquality functionEquality intEquality functionExtensionality imageElimination equalityTransitivity equalitySymmetry universeEquality callbyvalueReduce addEquality lambdaFormation unionElimination equalityElimination dependent_pairFormation int_eqEquality computeAll promote_hyp instantiate cumulativity applyLambdaEquality pointwiseFunctionality baseApply closedConclusion hypothesis_subsumption

Latex:
\mforall{}[L:\mBbbR{}  List].  \mforall{}[x:\mBbbR{}].    (radd-list([x  /  L])  =  (x  +  radd-list(L)))



Date html generated: 2017_10_02-PM-07_15_23
Last ObjectModification: 2017_07_28-AM-07_20_26

Theory : reals


Home Index