Nuprl Lemma : radd-list-cons
∀[L:ℝ List]. ∀[x:ℝ].  (radd-list([x / L]) = (x + radd-list(L)))
Proof
Definitions occuring in Statement : 
req: x = y
, 
radd: a + b
, 
radd-list: radd-list(L)
, 
real: ℝ
, 
cons: [a / b]
, 
list: T List
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
radd: a + b
, 
implies: P 
⇒ Q
, 
real: ℝ
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
top: Top
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
radd-list: radd-list(L)
, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓
, 
has-valueall: has-valueall(a)
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
bfalse: ff
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
ge: i ≥ j 
, 
nequal: a ≠ b ∈ T 
, 
le: A ≤ B
, 
decidable: Dec(P)
, 
int-to-real: r(n)
, 
cons: [a / b]
Lemmas referenced : 
req-iff-bdd-diff, 
radd-list_wf-bag, 
cons_wf, 
real_wf, 
list-subtype-bag, 
subtype_rel_self, 
radd_wf, 
req_witness, 
list_wf, 
accelerate_wf, 
less_than_wf, 
reg-seq-list-add_wf, 
nil_wf, 
length_of_cons_lemma, 
length_of_nil_lemma, 
nat_plus_wf, 
regular-int-seq_wf, 
length_wf, 
bdd-diff_wf, 
squash_wf, 
true_wf, 
reg-seq-list-add-as-l_sum, 
iff_weakening_equal, 
map_cons_lemma, 
map_nil_lemma, 
l_sum_cons_lemma, 
l_sum_nil_lemma, 
bdd-diff_functionality, 
bdd-diff_weakening, 
accelerate-bdd-diff, 
valueall-type-has-valueall, 
list-valueall-type, 
real-valueall-type, 
evalall-reduce, 
valueall-type-real-list, 
value-type-has-value, 
int-value-type, 
nat_wf, 
set-value-type, 
le_wf, 
length_wf_nat, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
itermAdd_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_formula_prop_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
non_neg_length, 
intformle_wf, 
int_formula_prop_le_lemma, 
add_nat_plus, 
nat_plus_properties, 
decidable__lt, 
add-is-int-iff, 
intformnot_wf, 
intformless_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
false_wf, 
int-to-real_wf, 
list-cases, 
decidable__equal_int, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
product_subtype_list, 
bdd-diff-add, 
add-commutes, 
add-associates, 
subtype_rel_list, 
l_sum_wf, 
map_wf, 
add_functionality_wrt_eq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
sqequalRule, 
productElimination, 
independent_functionElimination, 
isect_memberEquality, 
lambdaEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
dependent_functionElimination, 
voidElimination, 
voidEquality, 
setEquality, 
functionEquality, 
intEquality, 
functionExtensionality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
callbyvalueReduce, 
addEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
dependent_pairFormation, 
int_eqEquality, 
computeAll, 
promote_hyp, 
instantiate, 
cumulativity, 
applyLambdaEquality, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
hypothesis_subsumption
Latex:
\mforall{}[L:\mBbbR{}  List].  \mforall{}[x:\mBbbR{}].    (radd-list([x  /  L])  =  (x  +  radd-list(L)))
Date html generated:
2017_10_02-PM-07_15_23
Last ObjectModification:
2017_07_28-AM-07_20_26
Theory : reals
Home
Index