Nuprl Lemma : bdd-diff_wf
∀[f,g:ℕ+ ⟶ ℤ]. (bdd-diff(f;g) ∈ ℙ)
Proof
Definitions occuring in Statement :
bdd-diff: bdd-diff(f;g)
,
nat_plus: ℕ+
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
int: ℤ
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
bdd-diff: bdd-diff(f;g)
,
so_lambda: λ2x.t[x]
,
subtype_rel: A ⊆r B
,
nat: ℕ
,
so_apply: x[s]
Lemmas referenced :
exists_wf,
nat_wf,
all_wf,
nat_plus_wf,
le_wf,
absval_wf,
subtract_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesis,
lambdaEquality,
applyEquality,
hypothesisEquality,
setElimination,
rename,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
functionEquality,
intEquality,
isect_memberEquality,
because_Cache
Latex:
\mforall{}[f,g:\mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}]. (bdd-diff(f;g) \mmember{} \mBbbP{})
Date html generated:
2016_05_18-AM-06_46_18
Last ObjectModification:
2015_12_28-AM-00_24_47
Theory : reals
Home
Index