Nuprl Lemma : real-vec-norm-nonneg

[n:ℕ]. ∀[x:ℝ^n].  (r0 ≤ ||x||)


Proof




Definitions occuring in Statement :  real-vec-norm: ||x|| real-vec: ^n rleq: x ≤ y int-to-real: r(n) nat: uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T real-vec-norm: ||x|| prop: rleq: x ≤ y rnonneg: rnonneg(x) all: x:A. B[x] le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False subtype_rel: A ⊆B real:
Lemmas referenced :  rsqrt_nonneg dot-product-nonneg dot-product_wf rleq_wf int-to-real_wf less_than'_wf rsub_wf real-vec-norm_wf real_wf nat_plus_wf real-vec_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_set_memberEquality natural_numberEquality sqequalRule lambdaEquality dependent_functionElimination productElimination independent_pairEquality because_Cache applyEquality setElimination rename minusEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality voidElimination

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x:\mBbbR{}\^{}n].    (r0  \mleq{}  ||x||)



Date html generated: 2016_05_18-AM-09_48_39
Last ObjectModification: 2015_12_27-PM-11_11_36

Theory : reals


Home Index