Nuprl Lemma : rsqrt_nonneg

[x:{x:ℝr0 ≤ x} ]. (r0 ≤ rsqrt(x))


Proof




Definitions occuring in Statement :  rsqrt: rsqrt(x) rleq: x ≤ y int-to-real: r(n) real: uall: [x:A]. B[x] set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] and: P ∧ Q prop: so_apply: x[s] all: x:A. B[x] implies:  Q sq_stable: SqStable(P) squash: T rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B not: ¬A false: False subtype_rel: A ⊆B real:
Lemmas referenced :  nat_plus_wf rsub_wf less_than'_wf equal_wf sq_stable__rleq rmul_wf req_wf int-to-real_wf rleq_wf and_wf real_wf set_wf rsqrt_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule lambdaEquality natural_numberEquality setElimination rename lambdaFormation independent_functionElimination productElimination imageMemberEquality baseClosed imageElimination equalityTransitivity equalitySymmetry dependent_functionElimination independent_pairEquality voidElimination applyEquality setEquality minusEquality axiomEquality

Latex:
\mforall{}[x:\{x:\mBbbR{}|  r0  \mleq{}  x\}  ].  (r0  \mleq{}  rsqrt(x))



Date html generated: 2016_05_18-AM-09_43_19
Last ObjectModification: 2016_01_17-AM-02_49_04

Theory : reals


Home Index