Nuprl Lemma : ball-slice-radius_wf

[r:{r:ℝr0 ≤ r} ]. ∀[t:{t:ℝt ∈ [-(r), r]} ].  (ball-slice-radius(r;t) ∈ {r':ℝ(r0 ≤ r') ∧ ((r'^2 t^2) r^2)} )


Proof




Definitions occuring in Statement :  ball-slice-radius: ball-slice-radius(r;t) rccint: [l, u] i-member: r ∈ I rleq: x ≤ y rnexp: x^k1 req: y rminus: -(x) radd: b int-to-real: r(n) real: uall: [x:A]. B[x] and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) not: ¬A implies:  Q false: False uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) uimplies: supposing a ball-slice-radius: ball-slice-radius(r;t) prop: subtype_rel: A ⊆B cand: c∧ B all: x:A. B[x] sq_stable: SqStable(P) iff: ⇐⇒ Q rev_implies:  Q i-member: r ∈ I rccint: [l, u] squash: T req_int_terms: t1 ≡ t2 top: Top
Lemmas referenced :  radd-preserves-rleq int-to-real_wf rsub_wf rnexp_wf istype-void istype-le rsqrt_wf rleq_wf rsqrt_nonneg req_wf radd_wf real_wf i-member_wf rccint_wf rminus_wf itermSubtract_wf itermAdd_wf itermVar_wf itermConstant_wf rabs_wf req_weakening rnexp_functionality_wrt_rleq zero-rleq-rabs sq_stable__rleq rabs-rleq-iff req-iff-rsub-is-0 rleq_functionality real_polynomial_null istype-int real_term_value_sub_lemma real_term_value_add_lemma real_term_value_var_lemma real_term_value_const_lemma req_functionality rabs-rnexp2 radd_functionality rsqrt-rnexp-2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesis dependent_set_memberEquality_alt independent_pairFormation sqequalRule lambdaFormation_alt voidElimination hypothesisEquality setElimination rename because_Cache productElimination independent_isectElimination universeIsType applyEquality productIsType setIsType dependent_functionElimination independent_functionElimination imageMemberEquality baseClosed imageElimination lambdaEquality_alt inhabitedIsType equalityTransitivity equalitySymmetry approximateComputation int_eqEquality isect_memberEquality_alt

Latex:
\mforall{}[r:\{r:\mBbbR{}|  r0  \mleq{}  r\}  ].  \mforall{}[t:\{t:\mBbbR{}|  t  \mmember{}  [-(r),  r]\}  ].
    (ball-slice-radius(r;t)  \mmember{}  \{r':\mBbbR{}|  (r0  \mleq{}  r')  \mwedge{}  ((r'\^{}2  +  t\^{}2)  =  r\^{}2)\}  )



Date html generated: 2019_10_30-AM-10_14_57
Last ObjectModification: 2019_06_28-PM-01_52_13

Theory : real!vectors


Home Index