Nuprl Lemma : square-rleq-implies

x,y:ℝ.  ((r0 ≤ y)  (x^2 ≤ y^2)  (x ≤ y))


Proof




Definitions occuring in Statement :  rleq: x ≤ y rnexp: x^k1 int-to-real: r(n) real: all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q prop: iff: ⇐⇒ Q rev_implies:  Q nat: le: A ≤ B false: False not: ¬A uimplies: supposing a uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) top: Top guard: {T}
Lemmas referenced :  rnexp-rleq-iff rabs_wf zero-rleq-rabs less_than_wf rleq_wf rnexp_wf false_wf le_wf int-to-real_wf real_wf rnexp2-nonneg rleq_functionality req_inversion rabs-rnexp req_weakening rabs-of-nonneg rabs-as-rmax rleq-rmax rminus_wf rleq_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality hypothesis independent_functionElimination dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation imageMemberEquality baseClosed productElimination because_Cache independent_isectElimination isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}x,y:\mBbbR{}.    ((r0  \mleq{}  y)  {}\mRightarrow{}  (x\^{}2  \mleq{}  y\^{}2)  {}\mRightarrow{}  (x  \mleq{}  y))



Date html generated: 2016_10_26-AM-09_08_50
Last ObjectModification: 2016_09_30-AM-10_54_12

Theory : reals


Home Index