Nuprl Lemma : rabs-of-nonneg

[x:ℝ]. |x| supposing r0 ≤ x


Proof




Definitions occuring in Statement :  rleq: x ≤ y rabs: |x| req: y int-to-real: r(n) real: uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a top: Top implies:  Q prop: uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) all: x:A. B[x] itermConstant: "const" req_int_terms: t1 ≡ t2 false: False not: ¬A guard: {T}
Lemmas referenced :  rabs-as-rmax rmax-req2 rminus_wf req_witness rabs_wf rleq_wf int-to-real_wf real_wf radd-preserves-rleq rleq_functionality radd_wf rmul_wf real_term_polynomial itermSubtract_wf itermAdd_wf itermVar_wf itermMinus_wf itermConstant_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_add_lemma real_term_value_var_lemma real_term_value_minus_lemma req-iff-rsub-is-0 itermMultiply_wf real_term_value_mul_lemma rleq_transitivity uiff_transitivity req_weakening req_transitivity radd_functionality req_inversion rmul-identity1 rmul-distrib2 rmul_functionality radd-int radd_comm radd-zero-both
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis hypothesisEquality independent_isectElimination independent_functionElimination natural_numberEquality because_Cache equalityTransitivity equalitySymmetry productElimination dependent_functionElimination computeAll lambdaEquality int_eqEquality intEquality addEquality lemma_by_obid

Latex:
\mforall{}[x:\mBbbR{}].  |x|  =  x  supposing  r0  \mleq{}  x



Date html generated: 2017_10_03-AM-08_30_46
Last ObjectModification: 2017_07_28-AM-07_26_44

Theory : reals


Home Index