Nuprl Lemma : rabs-rnexp

[n:ℕ]. ∀[x:ℝ].  (|x^n| |x|^n)


Proof




Definitions occuring in Statement :  rabs: |x| rnexp: x^k1 req: y real: nat: uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] and: P ∧ Q prop: squash: T true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q le: A ≤ B less_than': less_than'(a;b) decidable: Dec(P) or: P ∨ Q nequal: a ≠ b ∈  assert: b bnot: ¬bb sq_type: SQType(T) bfalse: ff uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 top: Top rev_uimplies: rev_uimplies(P;Q)

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x:\mBbbR{}].    (|x\^{}n|  =  |x|\^{}n)



Date html generated: 2020_05_20-AM-10_59_24
Last ObjectModification: 2020_01_02-PM-02_13_16

Theory : reals


Home Index