Nuprl Definition : real-cube-complex

RealCubeComplex(k) ==
  T:Type
  × finite(T)
  × f:T ⟶ real-cube(k)
  × (∀t1,t2:T.  ((¬(t1 t2 ∈ T))  (adjacent-cubes(k;f t1;f t2) ∨ t1 t2)))



Definitions occuring in Statement :  adjacent-cubes: adjacent-cubes(k;c1;c2) real-cube-sep: c1 c2 real-cube: real-cube(k) finite: finite(T) all: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q apply: a function: x:A ⟶ B[x] product: x:A × B[x] universe: Type equal: t ∈ T
Definitions occuring in definition :  universe: Type finite: finite(T) product: x:A × B[x] function: x:A ⟶ B[x] real-cube: real-cube(k) all: x:A. B[x] implies:  Q not: ¬A equal: t ∈ T or: P ∨ Q adjacent-cubes: adjacent-cubes(k;c1;c2) real-cube-sep: c1 c2 apply: a
FDL editor aliases :  real-cube-complex

Latex:
RealCubeComplex(k)  ==
    T:Type
    \mtimes{}  finite(T)
    \mtimes{}  f:T  {}\mrightarrow{}  real-cube(k)
    \mtimes{}  (\mforall{}t1,t2:T.    ((\mneg{}(t1  =  t2))  {}\mRightarrow{}  (adjacent-cubes(k;f  t1;f  t2)  \mvee{}  f  t1  \#  f  t2)))



Date html generated: 2019_10_30-AM-11_31_40
Last ObjectModification: 2019_09_30-AM-11_18_03

Theory : real!vectors


Home Index