Step
*
1
of Lemma
real-cube-uniform-continuity
1. k : ℕ
2. a : ℕ0 ⟶ ℝ
3. b : ℕ0 ⟶ ℝ
4. ∀i:ℕ0. ((a i) < (b i))
5. f : {f:real-cube(0;a;b) ⟶ ℝ^k| ∀x,y:real-cube(0;a;b). (req-vec(0;x;y)
⇒ req-vec(k;f x;f y))}
6. e : {e:ℝ| r0 < e}
⊢ ∃d:ℕ+. ∀x,y:real-cube(0;a;b). ((d(x;y) ≤ (r1/r(d)))
⇒ (d(f x;f y) ≤ e))
BY
{ ((Assert Top ⊆r real-cube(0;a;b) BY
((D 0 THENA Auto) THEN MemTypeCD THEN Auto THEN Unfold `real-vec` 0 THEN FunExt THEN Auto))
THEN D 0 With ⌜1⌝
THEN Auto
THEN (Assert x = y ∈ real-cube(0;a;b) BY
(SubsumeC ⌜Top⌝⋅ THEN Auto))
THEN (RWO "-1" 0 THENA Auto)
THEN RWO "real-vec-dist-same-zero" 0
THEN Auto
THEN (Assert r0 < e BY
Auto)
THEN Auto) }
Latex:
Latex:
1. k : \mBbbN{}
2. a : \mBbbN{}0 {}\mrightarrow{} \mBbbR{}
3. b : \mBbbN{}0 {}\mrightarrow{} \mBbbR{}
4. \mforall{}i:\mBbbN{}0. ((a i) < (b i))
5. f : \{f:real-cube(0;a;b) {}\mrightarrow{} \mBbbR{}\^{}k| \mforall{}x,y:real-cube(0;a;b). (req-vec(0;x;y) {}\mRightarrow{} req-vec(k;f x;f y))\}
6. e : \{e:\mBbbR{}| r0 < e\}
\mvdash{} \mexists{}d:\mBbbN{}\msupplus{}. \mforall{}x,y:real-cube(0;a;b). ((d(x;y) \mleq{} (r1/r(d))) {}\mRightarrow{} (d(f x;f y) \mleq{} e))
By
Latex:
((Assert Top \msubseteq{}r real-cube(0;a;b) BY
((D 0 THENA Auto) THEN MemTypeCD THEN Auto THEN Unfold `real-vec` 0 THEN FunExt THEN Auto))
THEN D 0 With \mkleeneopen{}1\mkleeneclose{}
THEN Auto
THEN (Assert x = y BY
(SubsumeC \mkleeneopen{}Top\mkleeneclose{}\mcdot{} THEN Auto))
THEN (RWO "-1" 0 THENA Auto)
THEN RWO "real-vec-dist-same-zero" 0
THEN Auto
THEN (Assert r0 < e BY
Auto)
THEN Auto)
Home
Index