Nuprl Lemma : real-cube-uniform-continuity
∀k,n:ℕ. ∀a,b:ℕn ⟶ ℝ.
  ((∀i:ℕn. ((a i) < (b i)))
  
⇒ (∀f:{f:real-cube(n;a;b) ⟶ ℝ^k| ∀x,y:real-cube(n;a;b).  (req-vec(n;x;y) 
⇒ req-vec(k;f x;f y))} . ∀e:{e:ℝ| r0 < e} \000C.
        ∃d:ℕ+. ∀x,y:real-cube(n;a;b).  ((d(x;y) ≤ (r1/r(d))) 
⇒ (d(f x;f y) ≤ e))))
Proof
Definitions occuring in Statement : 
real-cube: real-cube(n;a;b)
, 
real-vec-dist: d(x;y)
, 
req-vec: req-vec(n;x;y)
, 
real-vec: ℝ^n
, 
rdiv: (x/y)
, 
rleq: x ≤ y
, 
rless: x < y
, 
int-to-real: r(n)
, 
real: ℝ
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
not: ¬A
, 
false: False
, 
real-cube: real-cube(n;a;b)
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
nat_plus: ℕ+
, 
subtype_rel: A ⊆r B
, 
rneq: x ≠ y
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rless: x < y
, 
sq_exists: ∃x:A [B[x]]
, 
real-vec: ℝ^n
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
sq_stable: SqStable(P)
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
sq_type: SQType(T)
, 
cand: A c∧ B
, 
rge: x ≥ y
, 
req_int_terms: t1 ≡ t2
, 
rfun: I ⟶ℝ
, 
real-fun: real-fun(f;a;b)
, 
req-vec: req-vec(n;x;y)
, 
real-cont: real-cont(f;a;b)
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
rdiv: (x/y)
, 
pi1: fst(t)
, 
subtract: n - m
, 
real: ℝ
, 
i-member: r ∈ I
, 
rccint: [l, u]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
bnot: ¬bb
, 
assert: ↑b
, 
real-vec-dist: d(x;y)
, 
real-vec-sub: X - Y
, 
dot-product: x⋅y
, 
pointwise-req: x[k] = y[k] for k ∈ [n,m]
, 
eq_int: (i =z j)
, 
nequal: a ≠ b ∈ T 
, 
pointwise-rleq: x[k] ≤ y[k] for k ∈ [n,m]
, 
label: ...$L... t
, 
int_nzero: ℤ-o
Lemmas referenced : 
real_wf, 
rless_wf, 
int-to-real_wf, 
real-cube_wf, 
istype-void, 
istype-le, 
real-vec_wf, 
req-vec_wf, 
int_seg_wf, 
int_seg_properties, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
nat_plus_wf, 
rleq_wf, 
real-vec-dist_wf, 
nat_plus_properties, 
rdiv_wf, 
rless-int, 
decidable__lt, 
istype-less_than, 
primrec-wf2, 
all_wf, 
exists_wf, 
istype-nat, 
istype-top, 
sq_stable__rless, 
rleq_weakening_rless, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
rleq_functionality, 
real-vec-dist-same-zero, 
req_weakening, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
member_rccint_lemma, 
sq_stable__rleq, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
int_seg_subtype_special, 
int_seg_cases, 
i-member_wf, 
rccint_wf, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
rleq_weakening, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
sq_stable__req, 
req_wf, 
small-reciprocal-real, 
rmul_preserves_rless, 
rless_transitivity2, 
rabs_wf, 
rsub_wf, 
rmul_wf, 
itermMultiply_wf, 
rinv_wf2, 
le_witness_for_triv, 
rless_functionality, 
req_transitivity, 
rmul-rinv3, 
real_term_value_mul_lemma, 
subtype_rel_function, 
int_seg_subtype, 
istype-false, 
not-le-2, 
condition-implies-le, 
add-associates, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-mul-special, 
zero-mul, 
add-zero, 
add-commutes, 
le-add-cancel2, 
rmin_wf, 
rmin_strict_ub, 
sq_stable__less_than, 
rmin-rleq, 
set_subtype_base, 
lelt_wf, 
real-vec-dist-dim1, 
sq_stable__i-member, 
nat_wf, 
le_wf, 
real-vec-dist-dim0, 
implies-real-vec-dist-rleq, 
rsqrt_wf, 
rleq-int, 
rmul_preserves_rleq, 
rsqrt-rleq-iff, 
rnexp_wf, 
rnexp2, 
rmul-int, 
mul_preserves_le, 
int_term_value_mul_lemma, 
rmul_preserves_rleq2, 
ifthenelse_wf, 
lt_int_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
iff_imp_equal_bool, 
btrue_wf, 
iff_functionality_wrt_iff, 
istype-true, 
subtract-add-cancel, 
bnot_wf, 
not_wf, 
istype-assert, 
zero-add, 
ite_rw_false, 
bool_cases, 
iff_transitivity, 
assert_of_bnot, 
add-member-int_seg2, 
square-rleq-implies, 
real-vec-dist-nonneg, 
rmul-rinv, 
real-vec-norm_wf, 
real-vec-sub_wf, 
dot-product_wf, 
real-vec-norm-squared, 
dot-product_functionality, 
rsum_functionality, 
rmul_comm, 
rsum_wf, 
rsum-shift, 
rsum-split-first, 
radd_wf, 
square-nonneg, 
trivial-rleq-radd, 
radd_functionality_wrt_rleq, 
rsum-split2, 
req_inversion, 
i-member_functionality, 
real-vec-dist_functionality, 
rneq-int, 
not_functionality_wrt_implies, 
equal-wf-base, 
rationals_wf, 
equal_functionality_wrt_subtype_rel2, 
int-subtype-rationals, 
int_nzero-rational, 
nat_plus_inc_int_nzero, 
proper-interval-to-int-bounded, 
absval_pos, 
nat_plus_subtype_nat, 
rleq-int-fractions, 
imax_wf, 
imax_nat_plus, 
imax_ub, 
eq_int_wf, 
assert_of_eq_int, 
neg_assert_of_eq_int, 
rsum_functionality_wrt_rleq, 
real-vec-triangle-inequality, 
rleq_transitivity, 
radd-rdiv, 
nequal_wf, 
int-rinv-cancel, 
real_term_value_add_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
setIsType, 
universeIsType, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
natural_numberEquality, 
hypothesisEquality, 
functionIsType, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
sqequalRule, 
voidElimination, 
because_Cache, 
setElimination, 
rename, 
applyEquality, 
productElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
inhabitedIsType, 
unionElimination, 
productIsType, 
closedConclusion, 
inrFormation_alt, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
setEquality, 
functionExtensionality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
instantiate, 
universeEquality, 
cumulativity, 
intEquality, 
hypothesis_subsumption, 
productEquality, 
promote_hyp, 
functionIsTypeImplies, 
equalityIstype, 
addEquality, 
minusEquality, 
multiplyEquality, 
hyp_replacement, 
applyLambdaEquality, 
equalityElimination, 
inlFormation_alt, 
sqequalBase
Latex:
\mforall{}k,n:\mBbbN{}.  \mforall{}a,b:\mBbbN{}n  {}\mrightarrow{}  \mBbbR{}.
    ((\mforall{}i:\mBbbN{}n.  ((a  i)  <  (b  i)))
    {}\mRightarrow{}  (\mforall{}f:\{f:real-cube(n;a;b)  {}\mrightarrow{}  \mBbbR{}\^{}k| 
                    \mforall{}x,y:real-cube(n;a;b).    (req-vec(n;x;y)  {}\mRightarrow{}  req-vec(k;f  x;f  y))\}  .  \mforall{}e:\{e:\mBbbR{}|  r0  <  e\}  .
                \mexists{}d:\mBbbN{}\msupplus{}.  \mforall{}x,y:real-cube(n;a;b).    ((d(x;y)  \mleq{}  (r1/r(d)))  {}\mRightarrow{}  (d(f  x;f  y)  \mleq{}  e))))
Date html generated:
2019_10_30-AM-10_14_34
Last ObjectModification:
2019_06_28-PM-01_52_02
Theory : real!vectors
Home
Index