Nuprl Lemma : real-cube-uniform-continuity

k,n:ℕ. ∀a,b:ℕn ⟶ ℝ.
  ((∀i:ℕn. ((a i) < (b i)))
   (∀f:{f:real-cube(n;a;b) ⟶ ℝ^k| ∀x,y:real-cube(n;a;b).  (req-vec(n;x;y)  req-vec(k;f x;f y))} . ∀e:{e:ℝr0 < e} \000C.
        ∃d:ℕ+. ∀x,y:real-cube(n;a;b).  ((d(x;y) ≤ (r1/r(d)))  (d(f x;f y) ≤ e))))


Proof




Definitions occuring in Statement :  real-cube: real-cube(n;a;b) real-vec-dist: d(x;y) req-vec: req-vec(n;x;y) real-vec: ^n rdiv: (x/y) rleq: x ≤ y rless: x < y int-to-real: r(n) real: int_seg: {i..j-} nat_plus: + nat: all: x:A. B[x] exists: x:A. B[x] implies:  Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] prop: nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) not: ¬A false: False real-cube: real-cube(n;a;b) int_seg: {i..j-} lelt: i ≤ j < k ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top decidable: Dec(P) or: P ∨ Q nat_plus: + subtype_rel: A ⊆B rneq: x ≠ y guard: {T} iff: ⇐⇒ Q rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] rless: x < y sq_exists: x:A [B[x]] real-vec: ^n less_than: a < b squash: T true: True sq_stable: SqStable(P) uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) sq_type: SQType(T) cand: c∧ B rge: x ≥ y req_int_terms: t1 ≡ t2 rfun: I ⟶ℝ real-fun: real-fun(f;a;b) req-vec: req-vec(n;x;y) real-cont: real-cont(f;a;b) rleq: x ≤ y rnonneg: rnonneg(x) rdiv: (x/y) pi1: fst(t) subtract: m real: i-member: r ∈ I rccint: [l, u] bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b real-vec-dist: d(x;y) real-vec-sub: Y dot-product: x⋅y pointwise-req: x[k] y[k] for k ∈ [n,m] eq_int: (i =z j) nequal: a ≠ b ∈  pointwise-rleq: x[k] ≤ y[k] for k ∈ [n,m] label: ...$L... t int_nzero: -o
Lemmas referenced :  real_wf rless_wf int-to-real_wf real-cube_wf istype-void istype-le real-vec_wf req-vec_wf int_seg_wf int_seg_properties nat_properties full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf istype-int int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf decidable__le intformnot_wf int_formula_prop_not_lemma subtract_wf itermSubtract_wf int_term_value_subtract_lemma nat_plus_wf rleq_wf real-vec-dist_wf nat_plus_properties rdiv_wf rless-int decidable__lt istype-less_than primrec-wf2 all_wf exists_wf istype-nat istype-top sq_stable__rless rleq_weakening_rless squash_wf true_wf subtype_rel_self iff_weakening_equal rleq_functionality real-vec-dist-same-zero req_weakening decidable__equal_int subtype_base_sq int_subtype_base member_rccint_lemma sq_stable__rleq intformeq_wf int_formula_prop_eq_lemma int_seg_subtype_special int_seg_cases i-member_wf rccint_wf rleq_functionality_wrt_implies rleq_weakening_equal rleq_weakening req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_var_lemma real_term_value_const_lemma sq_stable__req req_wf small-reciprocal-real rmul_preserves_rless rless_transitivity2 rabs_wf rsub_wf rmul_wf itermMultiply_wf rinv_wf2 le_witness_for_triv rless_functionality req_transitivity rmul-rinv3 real_term_value_mul_lemma subtype_rel_function int_seg_subtype istype-false not-le-2 condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul add-zero add-commutes le-add-cancel2 rmin_wf rmin_strict_ub sq_stable__less_than rmin-rleq set_subtype_base lelt_wf real-vec-dist-dim1 sq_stable__i-member nat_wf le_wf real-vec-dist-dim0 implies-real-vec-dist-rleq rsqrt_wf rleq-int rmul_preserves_rleq rsqrt-rleq-iff rnexp_wf rnexp2 rmul-int mul_preserves_le int_term_value_mul_lemma rmul_preserves_rleq2 ifthenelse_wf lt_int_wf itermAdd_wf int_term_value_add_lemma eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf iff_imp_equal_bool btrue_wf iff_functionality_wrt_iff istype-true subtract-add-cancel bnot_wf not_wf istype-assert zero-add ite_rw_false bool_cases iff_transitivity assert_of_bnot add-member-int_seg2 square-rleq-implies real-vec-dist-nonneg rmul-rinv real-vec-norm_wf real-vec-sub_wf dot-product_wf real-vec-norm-squared dot-product_functionality rsum_functionality rmul_comm rsum_wf rsum-shift rsum-split-first radd_wf square-nonneg trivial-rleq-radd radd_functionality_wrt_rleq rsum-split2 req_inversion i-member_functionality real-vec-dist_functionality rneq-int not_functionality_wrt_implies equal-wf-base rationals_wf equal_functionality_wrt_subtype_rel2 int-subtype-rationals int_nzero-rational nat_plus_inc_int_nzero proper-interval-to-int-bounded absval_pos nat_plus_subtype_nat rleq-int-fractions imax_wf imax_nat_plus imax_ub eq_int_wf assert_of_eq_int neg_assert_of_eq_int rsum_functionality_wrt_rleq real-vec-triangle-inequality rleq_transitivity radd-rdiv nequal_wf int-rinv-cancel real_term_value_add_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin setIsType universeIsType introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination natural_numberEquality hypothesisEquality functionIsType dependent_set_memberEquality_alt independent_pairFormation sqequalRule voidElimination because_Cache setElimination rename applyEquality productElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt inhabitedIsType unionElimination productIsType closedConclusion inrFormation_alt equalityTransitivity equalitySymmetry functionEquality setEquality functionExtensionality imageMemberEquality baseClosed imageElimination instantiate universeEquality cumulativity intEquality hypothesis_subsumption productEquality promote_hyp functionIsTypeImplies equalityIstype addEquality minusEquality multiplyEquality hyp_replacement applyLambdaEquality equalityElimination inlFormation_alt sqequalBase

Latex:
\mforall{}k,n:\mBbbN{}.  \mforall{}a,b:\mBbbN{}n  {}\mrightarrow{}  \mBbbR{}.
    ((\mforall{}i:\mBbbN{}n.  ((a  i)  <  (b  i)))
    {}\mRightarrow{}  (\mforall{}f:\{f:real-cube(n;a;b)  {}\mrightarrow{}  \mBbbR{}\^{}k| 
                    \mforall{}x,y:real-cube(n;a;b).    (req-vec(n;x;y)  {}\mRightarrow{}  req-vec(k;f  x;f  y))\}  .  \mforall{}e:\{e:\mBbbR{}|  r0  <  e\}  .
                \mexists{}d:\mBbbN{}\msupplus{}.  \mforall{}x,y:real-cube(n;a;b).    ((d(x;y)  \mleq{}  (r1/r(d)))  {}\mRightarrow{}  (d(f  x;f  y)  \mleq{}  e))))



Date html generated: 2019_10_30-AM-10_14_34
Last ObjectModification: 2019_06_28-PM-01_52_02

Theory : real!vectors


Home Index