Nuprl Lemma : real-vec-triangle-inequality

[n:ℕ]. ∀[x,y,z:ℝ^n].  (d(x;z) ≤ (d(x;y) d(y;z)))


Proof




Definitions occuring in Statement :  real-vec-dist: d(x;y) real-vec: ^n rleq: x ≤ y radd: b nat: uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T real-vec-dist: d(x;y) rleq: x ≤ y rnonneg: rnonneg(x) all: x:A. B[x] le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False subtype_rel: A ⊆B prop: real: rev_uimplies: rev_uimplies(P;Q) uimplies: supposing a rge: x ≥ y guard: {T} req-vec: req-vec(n;x;y) real-vec-sub: Y real-vec-add: Y nat: real-vec: ^n rsub: y uiff: uiff(P;Q)
Lemmas referenced :  less_than'_wf rsub_wf radd_wf real-vec-dist_wf real_wf rleq_wf int-to-real_wf nat_plus_wf real-vec_wf nat_wf real-vec-norm_wf real-vec-sub_wf real-vec-add_wf rleq_functionality_wrt_implies rleq_weakening_equal Minkowski-inequality1 real-vec-norm_functionality int_seg_wf req_wf rminus_wf req_weakening uiff_transitivity req_functionality req_inversion radd-assoc radd_functionality radd-ac radd-rminus-assoc rleq_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality productElimination independent_pairEquality because_Cache extract_by_obid isectElimination applyEquality hypothesis setElimination rename setEquality natural_numberEquality minusEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality voidElimination independent_isectElimination lambdaFormation independent_functionElimination

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y,z:\mBbbR{}\^{}n].    (d(x;z)  \mleq{}  (d(x;y)  +  d(y;z)))



Date html generated: 2016_10_26-AM-10_27_25
Last ObjectModification: 2016_09_14-PM-06_48_45

Theory : reals


Home Index