Nuprl Lemma : Minkowski-inequality1

[n:ℕ]. ∀[x,y:ℝ^n].  (||x y|| ≤ (||x|| ||y||))


Proof




Definitions occuring in Statement :  real-vec-norm: ||x|| real-vec-add: Y real-vec: ^n rleq: x ≤ y radd: b nat: uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q prop: iff: ⇐⇒ Q rev_implies:  Q rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B not: ¬A false: False subtype_rel: A ⊆B real: cand: c∧ B nat: uimplies: supposing a rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y guard: {T} uiff: uiff(P;Q) itermConstant: "const" req_int_terms: t1 ≡ t2 real_term_value: real_term_value(f;t) int_term_ind: int_term_ind itermSubtract: left (-) right itermAdd: left (+) right itermVar: vvar itermMultiply: left (*) right top: Top
Lemmas referenced :  rnexp-rleq-iff real-vec-norm_wf real-vec-add_wf radd_wf real-vec-norm-nonneg radd-non-neg less_than_wf less_than'_wf rsub_wf real_wf nat_plus_wf real-vec_wf nat_wf rnexp_wf false_wf le_wf rmul_wf int-to-real_wf dot-product_wf rleq_weakening_equal rleq_functionality_wrt_implies rleq_transitivity rleq_weakening radd_functionality_wrt_rleq req_inversion req_functionality req_transitivity real-vec-norm-squared dot-product-linearity1 radd_functionality req_weakening dot-product-comm real_term_polynomial itermSubtract_wf itermAdd_wf itermVar_wf itermMultiply_wf itermConstant_wf req-iff-rsub-is-0 rmul_functionality radd_comm rmul-assoc radd-int rmul-identity1 rmul-distrib2 radd-assoc rmul_comm rmul-distrib uiff_transitivity rnexp2 req_wf Cauchy-Schwarz rmul_preserves_rleq2 rabs_wf rleq-int rleq_wf rleq_functionality real_term_value_const_lemma real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma equal_wf rminus_wf rleq-rmax rabs-as-rmax
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality hypothesis independent_functionElimination because_Cache dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation imageMemberEquality baseClosed productElimination lambdaEquality independent_pairEquality applyEquality setElimination rename minusEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality voidElimination lambdaFormation independent_isectElimination computeAll int_eqEquality intEquality addEquality voidEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbR{}\^{}n].    (||x  +  y||  \mleq{}  (||x||  +  ||y||))



Date html generated: 2017_10_03-AM-10_54_58
Last ObjectModification: 2017_07_28-AM-08_20_41

Theory : reals


Home Index