Nuprl Lemma : radd-non-neg
∀x,y:ℝ.  ((r0 ≤ x) ⇒ (r0 ≤ y) ⇒ (r0 ≤ (x + y)))
Proof
Definitions occuring in Statement : 
rleq: x ≤ y, 
radd: a + b, 
int-to-real: r(n), 
real: ℝ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
guard: {T}
Lemmas referenced : 
rleq_wf, 
int-to-real_wf, 
real_wf, 
radd-preserves-rleq, 
radd_wf, 
rleq_transitivity, 
rleq_functionality, 
radd-zero, 
req_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
productElimination, 
independent_isectElimination, 
because_Cache
Latex:
\mforall{}x,y:\mBbbR{}.    ((r0  \mleq{}  x)  {}\mRightarrow{}  (r0  \mleq{}  y)  {}\mRightarrow{}  (r0  \mleq{}  (x  +  y)))
Date html generated:
2016_05_18-AM-07_10_05
Last ObjectModification:
2015_12_28-AM-00_38_38
Theory : reals
Home
Index