Nuprl Lemma : radd-zero
∀[x:ℝ]. ((x + r0) = x)
Proof
Definitions occuring in Statement : 
req: x = y
, 
radd: a + b
, 
int-to-real: r(n)
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
radd: a + b
, 
implies: P 
⇒ Q
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
top: Top
, 
real: ℝ
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
int-to-real: r(n)
, 
bdd-diff: bdd-diff(f;g)
, 
exists: ∃x:A. B[x]
, 
nat: ℕ
, 
le: A ≤ B
, 
false: False
, 
not: ¬A
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
absval: |i|
, 
subtract: n - m
Lemmas referenced : 
add-mul-special, 
zero-add, 
zero-mul, 
mul-associates, 
mul-swap, 
mul-commutes, 
minus-one-mul, 
add-associates, 
bdd-diff_weakening, 
accelerate-bdd-diff, 
bdd-diff_functionality, 
nat_wf, 
subtract_wf, 
absval_wf, 
all_wf, 
le_wf, 
false_wf, 
l_sum_nil_lemma, 
l_sum_cons_lemma, 
map_nil_lemma, 
map_cons_lemma, 
iff_weakening_equal, 
reg-seq-list-add-as-l_sum, 
true_wf, 
squash_wf, 
bdd-diff_wf, 
length_wf, 
regular-int-seq_wf, 
nat_plus_wf, 
length_of_nil_lemma, 
length_of_cons_lemma, 
nil_wf, 
cons_wf, 
reg-seq-list-add_wf, 
less_than_wf, 
accelerate_wf, 
real_wf, 
req_witness, 
int-to-real_wf, 
radd_wf, 
req-iff-bdd-diff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
natural_numberEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
independent_functionElimination, 
dependent_set_memberEquality, 
sqequalRule, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
because_Cache, 
applyEquality, 
lambdaEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
setEquality, 
functionEquality, 
intEquality, 
setElimination, 
rename, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
dependent_pairFormation, 
lambdaFormation, 
addEquality, 
multiplyEquality, 
minusEquality
Latex:
\mforall{}[x:\mBbbR{}].  ((x  +  r0)  =  x)
Date html generated:
2016_05_18-AM-06_51_41
Last ObjectModification:
2016_01_17-AM-01_46_39
Theory : reals
Home
Index