Nuprl Lemma : radd-assoc

[x,y,z:ℝ].  ((x z) ((x y) z))


Proof




Definitions occuring in Statement :  req: y radd: b real: uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T guard: {T} uimplies: supposing a implies:  Q
Lemmas referenced :  radd_assoc req_inversion radd_wf req_witness real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_isectElimination independent_functionElimination sqequalRule isect_memberEquality because_Cache

Latex:
\mforall{}[x,y,z:\mBbbR{}].    ((x  +  y  +  z)  =  ((x  +  y)  +  z))



Date html generated: 2016_05_18-AM-06_51_20
Last ObjectModification: 2015_12_28-AM-00_29_36

Theory : reals


Home Index