Nuprl Lemma : radd-assoc
∀[x,y,z:ℝ].  ((x + y + z) = ((x + y) + z))
Proof
Definitions occuring in Statement : 
req: x = y
, 
radd: a + b
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
guard: {T}
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
Lemmas referenced : 
radd_assoc, 
req_inversion, 
radd_wf, 
req_witness, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
independent_functionElimination, 
sqequalRule, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[x,y,z:\mBbbR{}].    ((x  +  y  +  z)  =  ((x  +  y)  +  z))
Date html generated:
2016_05_18-AM-06_51_20
Last ObjectModification:
2015_12_28-AM-00_29_36
Theory : reals
Home
Index