Nuprl Lemma : radd_assoc

[a,b,c:ℝ].  (((a b) c) (a c))


Proof




Definitions occuring in Statement :  req: y radd: b real: uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q subtype_rel: A ⊆B uimplies: supposing a true: True squash: T prop: guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) append: as bs all: x:A. B[x] so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3]
Lemmas referenced :  radd-list-cons cons_wf real_wf nil_wf req_witness radd_wf radd-list_wf-bag list-subtype-bag subtype_rel_self equal_wf squash_wf true_wf radd_comm_eq iff_weakening_equal req_wf radd-as-radd-list req_functionality req_weakening req_inversion append_wf list_ind_cons_lemma list_ind_nil_lemma permutation_weakening permutation_functionality_wrt_permutation permutation-rotate-cons radd-list_functionality_wrt_permutation
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality independent_functionElimination sqequalRule isect_memberEquality because_Cache applyEquality independent_isectElimination natural_numberEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality baseClosed productElimination hyp_replacement applyLambdaEquality dependent_functionElimination voidElimination voidEquality

Latex:
\mforall{}[a,b,c:\mBbbR{}].    (((a  +  b)  +  c)  =  (a  +  b  +  c))



Date html generated: 2017_10_02-PM-07_15_32
Last ObjectModification: 2017_07_28-AM-07_20_32

Theory : reals


Home Index