Nuprl Lemma : radd_assoc
∀[a,b,c:ℝ].  (((a + b) + c) = (a + b + c))
Proof
Definitions occuring in Statement : 
req: x = y
, 
radd: a + b
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
true: True
, 
squash: ↓T
, 
prop: ℙ
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
append: as @ bs
, 
all: ∀x:A. B[x]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
radd-list-cons, 
cons_wf, 
real_wf, 
nil_wf, 
req_witness, 
radd_wf, 
radd-list_wf-bag, 
list-subtype-bag, 
subtype_rel_self, 
equal_wf, 
squash_wf, 
true_wf, 
radd_comm_eq, 
iff_weakening_equal, 
req_wf, 
radd-as-radd-list, 
req_functionality, 
req_weakening, 
req_inversion, 
append_wf, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
permutation_weakening, 
permutation_functionality_wrt_permutation, 
permutation-rotate-cons, 
radd-list_functionality_wrt_permutation
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
independent_functionElimination, 
sqequalRule, 
isect_memberEquality, 
because_Cache, 
applyEquality, 
independent_isectElimination, 
natural_numberEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
hyp_replacement, 
applyLambdaEquality, 
dependent_functionElimination, 
voidElimination, 
voidEquality
Latex:
\mforall{}[a,b,c:\mBbbR{}].    (((a  +  b)  +  c)  =  (a  +  b  +  c))
Date html generated:
2017_10_02-PM-07_15_32
Last ObjectModification:
2017_07_28-AM-07_20_32
Theory : reals
Home
Index