Nuprl Lemma : int-rinv-cancel
∀[a:ℤ]. ∀[b:ℤ-o]. ∀[x:ℝ].  ((r(a * b) * rinv(r(b)) * x) = (r(a) * x))
Proof
Definitions occuring in Statement : 
rinv: rinv(x)
, 
req: x = y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
int_nzero: ℤ-o
, 
uall: ∀[x:A]. B[x]
, 
multiply: n * m
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int_nzero: ℤ-o
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
not: ¬A
, 
nequal: a ≠ b ∈ T 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req_witness, 
rmul_wf, 
int-to-real_wf, 
rinv_wf2, 
rneq-int, 
int_nzero_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformnot_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_wf, 
equal-wf-T-base, 
real_wf, 
int_nzero_wf, 
req_wf, 
rmul-one, 
req_weakening, 
rmul_functionality, 
req_functionality, 
req_inversion, 
rmul_assoc, 
uiff_transitivity, 
rmul-int, 
rmul-rinv1, 
rnonzero-iff, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
multiplyEquality, 
hypothesisEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
independent_functionElimination, 
dependent_functionElimination, 
natural_numberEquality, 
productElimination, 
lambdaFormation, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
baseClosed
Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[b:\mBbbZ{}\msupminus{}\msupzero{}].  \mforall{}[x:\mBbbR{}].    ((r(a  *  b)  *  rinv(r(b))  *  x)  =  (r(a)  *  x))
Date html generated:
2017_10_03-AM-08_34_28
Last ObjectModification:
2017_04_05-PM-04_22_08
Theory : reals
Home
Index