Nuprl Lemma : rmul-rinv1

[x:ℝ]. (rnonzero(x)  ((x rinv(x)) r1))


Proof




Definitions occuring in Statement :  rinv: rinv(x) rnonzero: rnonzero(x) req: y rmul: b int-to-real: r(n) real: uall: [x:A]. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: real: subtype_rel: A ⊆B rinv: rinv(x) rnonzero: rnonzero(x) int_upper: {i...} so_lambda: λ2x.t[x] so_apply: x[s] squash: T has-value: (a)↓ nat_plus: + le: A ≤ B all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False less_than': less_than'(a;b) true: True exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top nat: rev_uimplies: rev_uimplies(P;Q) sq_type: SQType(T) guard: {T} int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b bdd-diff: bdd-diff(f;g) ge: i ≥  int-to-real: r(n) reg-seq-inv: reg-seq-inv(x) reg-seq-mul: reg-seq-mul(x;y) nequal: a ≠ b ∈  absval: |i| int_nzero: -o subtract: m sq_stable: SqStable(P) reg-seq-adjust: reg-seq-adjust(n;x)
Lemmas referenced :  req-iff-bdd-diff rmul_wf rinv_wf int-to-real_wf rnonzero_wf req_witness real_wf reg-seq-mul_wf subtype_base_sq int_upper_wf set_subtype_base le_wf int_subtype_base mu-ge_wf value-type-has-value int-value-type decidable__lt false_wf not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel less_than_wf lt_int_wf absval_wf subtype_rel_sets decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf assert_of_lt_int nat_wf assert_wf bdd-diff_functionality rmul-bdd-diff-reg-seq-mul bdd-diff_weakening mu-ge-property int_seg_wf rnonzero-lemma1 int_upper_properties set-value-type eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int upper_subtype_upper nequal-le-implies uall_wf not_wf reg-seq-inv_wf nat_plus_properties multiply-is-int-iff itermMultiply_wf int_term_value_mul_lemma nat_plus_wf subtype_rel_self regular-int-seq_wf bdd-diff_wf squash_wf true_wf reg-seq-mul-comm accelerate_wf iff_weakening_equal reg-seq-mul_functionality_wrt_bdd-diff accelerate-bdd-diff canonical-bound_wf all_wf add_nat_wf subtype_rel_set upper_subtype_nat nat_properties add-is-int-iff itermAdd_wf intformeq_wf int_term_value_add_lemma int_formula_prop_eq_lemma subtract_wf equal-wf-T-base mul_cancel_in_le equal-wf-base absval_nat_plus absval_mul div_rem_sum2 nequal_wf left_mul_subtract_distrib mul-commutes add-associates mul-associates mul-distributes minus-one-mul mul-swap one-mul add-swap mul-distributes-right zero-mul le_functionality int-triangle-inequality le_weakening add_functionality_wrt_eq absval_sym rem_bounds_absval set_wf sq_stable__less_than sq_stable__le absval_pos mul_bounds_1a reg-seq-adjust_wf lelt_wf mul_nat_plus reg-seq-adjust-property mul_preserves_le and_wf bdd-diff-iff-eventual exists_wf less_than_transitivity1 top_wf not-equal-2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination hypothesis natural_numberEquality productElimination independent_isectElimination setElimination rename sqequalRule lambdaEquality dependent_functionElimination because_Cache applyEquality instantiate cumulativity intEquality imageElimination callbyvalueReduce dependent_set_memberEquality unionElimination independent_pairFormation voidElimination dependent_pairFormation setEquality approximateComputation int_eqEquality isect_memberEquality voidEquality imageMemberEquality baseClosed equalityTransitivity equalitySymmetry promote_hyp applyLambdaEquality equalityElimination hypothesis_subsumption productEquality multiplyEquality pointwiseFunctionality baseApply closedConclusion functionEquality universeEquality addEquality minusEquality divideEquality remainderEquality hyp_replacement lessCases axiomSqEquality

Latex:
\mforall{}[x:\mBbbR{}].  (rnonzero(x)  {}\mRightarrow{}  ((x  *  rinv(x))  =  r1))



Date html generated: 2019_10_16-PM-03_07_40
Last ObjectModification: 2018_08_27-PM-00_08_07

Theory : reals


Home Index