Nuprl Lemma : rmul-rinv1
∀[x:ℝ]. (rnonzero(x) 
⇒ ((x * rinv(x)) = r1))
Proof
Definitions occuring in Statement : 
rinv: rinv(x)
, 
rnonzero: rnonzero(x)
, 
req: x = y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
prop: ℙ
, 
real: ℝ
, 
subtype_rel: A ⊆r B
, 
rinv: rinv(x)
, 
rnonzero: rnonzero(x)
, 
int_upper: {i...}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
squash: ↓T
, 
has-value: (a)↓
, 
nat_plus: ℕ+
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
less_than': less_than'(a;b)
, 
true: True
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
nat: ℕ
, 
rev_uimplies: rev_uimplies(P;Q)
, 
sq_type: SQType(T)
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
less_than: a < b
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
bnot: ¬bb
, 
assert: ↑b
, 
bdd-diff: bdd-diff(f;g)
, 
ge: i ≥ j 
, 
int-to-real: r(n)
, 
reg-seq-inv: reg-seq-inv(x)
, 
reg-seq-mul: reg-seq-mul(x;y)
, 
nequal: a ≠ b ∈ T 
, 
absval: |i|
, 
int_nzero: ℤ-o
, 
subtract: n - m
, 
sq_stable: SqStable(P)
, 
reg-seq-adjust: reg-seq-adjust(n;x)
Lemmas referenced : 
req-iff-bdd-diff, 
rmul_wf, 
rinv_wf, 
int-to-real_wf, 
rnonzero_wf, 
req_witness, 
real_wf, 
reg-seq-mul_wf, 
subtype_base_sq, 
int_upper_wf, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
mu-ge_wf, 
value-type-has-value, 
int-value-type, 
decidable__lt, 
false_wf, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
zero-add, 
le-add-cancel, 
less_than_wf, 
lt_int_wf, 
absval_wf, 
subtype_rel_sets, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
assert_of_lt_int, 
nat_wf, 
assert_wf, 
bdd-diff_functionality, 
rmul-bdd-diff-reg-seq-mul, 
bdd-diff_weakening, 
mu-ge-property, 
int_seg_wf, 
rnonzero-lemma1, 
int_upper_properties, 
set-value-type, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
upper_subtype_upper, 
nequal-le-implies, 
uall_wf, 
not_wf, 
reg-seq-inv_wf, 
nat_plus_properties, 
multiply-is-int-iff, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
nat_plus_wf, 
subtype_rel_self, 
regular-int-seq_wf, 
bdd-diff_wf, 
squash_wf, 
true_wf, 
reg-seq-mul-comm, 
accelerate_wf, 
iff_weakening_equal, 
reg-seq-mul_functionality_wrt_bdd-diff, 
accelerate-bdd-diff, 
canonical-bound_wf, 
all_wf, 
add_nat_wf, 
subtype_rel_set, 
upper_subtype_nat, 
nat_properties, 
add-is-int-iff, 
itermAdd_wf, 
intformeq_wf, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
subtract_wf, 
equal-wf-T-base, 
mul_cancel_in_le, 
equal-wf-base, 
absval_nat_plus, 
absval_mul, 
div_rem_sum2, 
nequal_wf, 
left_mul_subtract_distrib, 
mul-commutes, 
add-associates, 
mul-associates, 
mul-distributes, 
minus-one-mul, 
mul-swap, 
one-mul, 
add-swap, 
mul-distributes-right, 
zero-mul, 
le_functionality, 
int-triangle-inequality, 
le_weakening, 
add_functionality_wrt_eq, 
absval_sym, 
rem_bounds_absval, 
set_wf, 
sq_stable__less_than, 
sq_stable__le, 
absval_pos, 
mul_bounds_1a, 
reg-seq-adjust_wf, 
lelt_wf, 
mul_nat_plus, 
reg-seq-adjust-property, 
mul_preserves_le, 
and_wf, 
bdd-diff-iff-eventual, 
exists_wf, 
less_than_transitivity1, 
top_wf, 
not-equal-2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
natural_numberEquality, 
productElimination, 
independent_isectElimination, 
setElimination, 
rename, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
applyEquality, 
instantiate, 
cumulativity, 
intEquality, 
imageElimination, 
callbyvalueReduce, 
dependent_set_memberEquality, 
unionElimination, 
independent_pairFormation, 
voidElimination, 
dependent_pairFormation, 
setEquality, 
approximateComputation, 
int_eqEquality, 
isect_memberEquality, 
voidEquality, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
applyLambdaEquality, 
equalityElimination, 
hypothesis_subsumption, 
productEquality, 
multiplyEquality, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
functionEquality, 
universeEquality, 
addEquality, 
minusEquality, 
divideEquality, 
remainderEquality, 
hyp_replacement, 
lessCases, 
axiomSqEquality
Latex:
\mforall{}[x:\mBbbR{}].  (rnonzero(x)  {}\mRightarrow{}  ((x  *  rinv(x))  =  r1))
Date html generated:
2019_10_16-PM-03_07_40
Last ObjectModification:
2018_08_27-PM-00_08_07
Theory : reals
Home
Index