Nuprl Lemma : mu-ge-property
∀[n:ℤ]. ∀[f:{n...} ⟶ 𝔹].  {(↑(f mu-ge(f;n))) ∧ (∀[i:{n..mu-ge(f;n)-}]. (¬↑(f i)))} supposing ∃m:{n...}. (↑(f m))
Proof
Definitions occuring in Statement : 
mu-ge: mu-ge(f;n), 
int_upper: {i...}, 
int_seg: {i..j-}, 
assert: ↑b, 
bool: 𝔹, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
guard: {T}, 
exists: ∃x:A. B[x], 
not: ¬A, 
and: P ∧ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
guard: {T}, 
and: P ∧ Q, 
implies: P ⇒ Q, 
not: ¬A, 
false: False, 
exists: ∃x:A. B[x], 
all: ∀x:A. B[x], 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
less_than: a < b, 
squash: ↓T, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
int_upper: {i...}, 
decidable: Dec(P), 
or: P ∨ Q, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
assert: ↑b, 
bnot: ¬bb, 
sq_type: SQType(T), 
bfalse: ff, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
btrue: tt, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
mu-ge: mu-ge(f;n), 
true: True, 
less_than': less_than'(a;b), 
le: A ≤ B, 
subtract: n - m, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
has-value: (a)↓, 
cand: A c∧ B, 
nat: ℕ
Lemmas referenced : 
assert_witness, 
mu-ge_wf, 
istype-int_upper, 
istype-assert, 
bool_wf, 
istype-int, 
int_seg_wf, 
int_seg_properties, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
int_seg_subtype_upper, 
le_reflexive, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
istype-le, 
istype-less_than, 
primrec-wf2, 
istype-nat, 
subtract_wf, 
assert_wf, 
uall_wf, 
all_wf, 
exists_wf, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
eqtt_to_assert, 
le_wf, 
int_upper_wf, 
lelt_wf, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
decidable__lt, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
btrue_neq_bfalse, 
not_assert_elim, 
int_subtype_base, 
assert_elim, 
decidable__equal_int, 
subtype_rel_self, 
le-add-cancel, 
add-commutes, 
add-associates, 
add-zero, 
zero-mul, 
add-mul-special, 
minus-one-mul-top, 
add-swap, 
minus-one-mul, 
minus-add, 
condition-implies-le, 
not-le-2, 
istype-false, 
upper_subtype_upper, 
subtype_rel_function, 
int-value-type, 
value-type-has-value, 
set_subtype_base, 
int_upper_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
extract_by_obid, 
isectElimination, 
applyEquality, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
independent_functionElimination, 
Error :isect_memberEquality_alt, 
Error :lambdaEquality_alt, 
dependent_functionElimination, 
because_Cache, 
Error :functionIsTypeImplies, 
Error :inhabitedIsType, 
Error :isectIsTypeImplies, 
Error :productIsType, 
Error :functionIsType, 
Error :universeIsType, 
voidElimination, 
Error :lambdaFormation_alt, 
addEquality, 
natural_numberEquality, 
setElimination, 
rename, 
imageElimination, 
approximateComputation, 
Error :dependent_pairFormation_alt, 
int_eqEquality, 
independent_pairFormation, 
Error :dependent_set_memberEquality_alt, 
unionElimination, 
Error :setIsType, 
productEquality, 
functionEquality, 
cumulativity, 
instantiate, 
promote_hyp, 
Error :equalityIsType1, 
equalitySymmetry, 
equalityTransitivity, 
equalityElimination, 
functionExtensionality, 
applyLambdaEquality, 
hyp_replacement, 
Error :equalityIsType4, 
multiplyEquality, 
minusEquality, 
intEquality, 
callbyvalueReduce, 
dependent_set_memberEquality, 
dependent_pairFormation, 
lambdaEquality, 
isect_memberEquality, 
voidEquality
Latex:
\mforall{}[n:\mBbbZ{}].  \mforall{}[f:\{n...\}  {}\mrightarrow{}  \mBbbB{}].
    \{(\muparrow{}(f  mu-ge(f;n)))  \mwedge{}  (\mforall{}[i:\{n..mu-ge(f;n)\msupminus{}\}].  (\mneg{}\muparrow{}(f  i)))\}  supposing  \mexists{}m:\{n...\}.  (\muparrow{}(f  m))
Date html generated:
2019_06_20-PM-01_16_43
Last ObjectModification:
2019_03_05-PM-03_39_24
Theory : int_2
Home
Index