Nuprl Lemma : mu-ge_wf
∀[n:ℤ]. ∀[f:{n...} ⟶ 𝔹].  mu-ge(f;n) ∈ {n...} supposing ∃m:{n...}. (↑(f m))
Proof
Definitions occuring in Statement : 
mu-ge: mu-ge(f;n)
, 
int_upper: {i...}
, 
assert: ↑b
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
top: Top
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
isl: isl(x)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
true: True
, 
bfalse: ff
, 
false: False
Lemmas referenced : 
mu-ge_wf2, 
subtype_rel_union, 
unit_wf2, 
top_wf, 
assert_wf, 
isl_wf, 
int_upper_wf, 
bool_wf, 
exists_wf, 
equal_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
sqequalRule, 
because_Cache, 
independent_isectElimination, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
productElimination, 
dependent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
functionEquality, 
intEquality, 
lambdaFormation, 
unionElimination, 
natural_numberEquality, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[n:\mBbbZ{}].  \mforall{}[f:\{n...\}  {}\mrightarrow{}  \mBbbB{}].    mu-ge(f;n)  \mmember{}  \{n...\}  supposing  \mexists{}m:\{n...\}.  (\muparrow{}(f  m))
Date html generated:
2017_04_14-AM-09_18_11
Last ObjectModification:
2017_02_27-PM-03_54_12
Theory : int_2
Home
Index