Nuprl Lemma : mu-ge_wf

[n:ℤ]. ∀[f:{n...} ⟶ 𝔹].  mu-ge(f;n) ∈ {n...} supposing ∃m:{n...}. (↑(f m))


Proof




Definitions occuring in Statement :  mu-ge: mu-ge(f;n) int_upper: {i...} assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] exists: x:A. B[x] member: t ∈ T apply: a function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B bool: 𝔹 uimplies: supposing a top: Top exists: x:A. B[x] prop: so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] implies:  Q isl: isl(x) assert: b ifthenelse: if then else fi  btrue: tt true: True bfalse: ff false: False
Lemmas referenced :  mu-ge_wf2 subtype_rel_union unit_wf2 top_wf assert_wf isl_wf int_upper_wf bool_wf exists_wf equal_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality functionExtensionality applyEquality sqequalRule because_Cache independent_isectElimination lambdaEquality isect_memberEquality voidElimination voidEquality productElimination dependent_pairFormation equalityTransitivity equalitySymmetry axiomEquality functionEquality intEquality lambdaFormation unionElimination natural_numberEquality dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[n:\mBbbZ{}].  \mforall{}[f:\{n...\}  {}\mrightarrow{}  \mBbbB{}].    mu-ge(f;n)  \mmember{}  \{n...\}  supposing  \mexists{}m:\{n...\}.  (\muparrow{}(f  m))



Date html generated: 2017_04_14-AM-09_18_11
Last ObjectModification: 2017_02_27-PM-03_54_12

Theory : int_2


Home Index