Nuprl Lemma : reg-seq-mul_functionality_wrt_bdd-diff
∀x1:ℝ. ∀[x2,y1:ℕ+ ⟶ ℤ].  ∀y2:ℝ. (bdd-diff(y1;y2) ⇒ bdd-diff(x1;x2) ⇒ bdd-diff(reg-seq-mul(x1;y1);reg-seq-mul(x2;y2)))
Proof
Definitions occuring in Statement : 
reg-seq-mul: reg-seq-mul(x;y), 
real: ℝ, 
bdd-diff: bdd-diff(f;g), 
nat_plus: ℕ+, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
bdd-diff: bdd-diff(f;g), 
exists: ∃x:A. B[x], 
reg-seq-mul: reg-seq-mul(x;y), 
member: t ∈ T, 
nat: ℕ, 
subtype_rel: A ⊆r B, 
int_upper: {i...}, 
so_lambda: λ2x.t[x], 
real: ℝ, 
nat_plus: ℕ+, 
so_apply: x[s], 
prop: ℙ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
uimplies: b supposing a, 
guard: {T}, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
uiff: uiff(P;Q), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
nequal: a ≠ b ∈ T , 
squash: ↓T, 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
int_nzero: ℤ-o, 
sq_stable: SqStable(P), 
rev_uimplies: rev_uimplies(P;Q), 
subtract: n - m, 
sq_type: SQType(T), 
less_than: a < b
Lemmas referenced : 
canonical-bound_wf, 
int_upper_wf, 
all_wf, 
nat_plus_wf, 
le_wf, 
absval_wf, 
add_nat_wf, 
false_wf, 
multiply_nat_wf, 
subtype_rel_set, 
nat_wf, 
int_upper_subtype_nat, 
nat_properties, 
decidable__le, 
add-is-int-iff, 
multiply-is-int-iff, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
itermMultiply_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
equal_wf, 
mul_cancel_in_le, 
subtract_wf, 
nat_plus_properties, 
intformless_wf, 
int_formula_prop_less_lemma, 
absval_nat_plus, 
equal-wf-T-base, 
squash_wf, 
true_wf, 
absval_mul, 
iff_weakening_equal, 
less_than'_wf, 
equal-wf-base, 
bdd-diff_wf, 
real_wf, 
nequal_wf, 
rem_bounds_absval, 
less_than_wf, 
set_wf, 
left_mul_subtract_distrib, 
div_rem_sum2, 
sq_stable__less_than, 
le_functionality, 
le_weakening, 
add_functionality_wrt_le, 
int-triangle-inequality, 
minus-add, 
minus-minus, 
add-associates, 
minus-one-mul, 
add-swap, 
add-commutes, 
subtype_base_sq, 
int_subtype_base, 
decidable__equal_int, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
add_functionality_wrt_eq, 
multiply_functionality_wrt_le, 
sq_stable__le, 
absval_pos, 
nat_plus_subtype_nat, 
int_upper_properties, 
absval_sym
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
dependent_pairFormation, 
dependent_set_memberEquality, 
addEquality, 
natural_numberEquality, 
multiplyEquality, 
setElimination, 
rename, 
cut, 
hypothesisEquality, 
hypothesis, 
introduction, 
extract_by_obid, 
isectElimination, 
applyEquality, 
lambdaEquality, 
setEquality, 
because_Cache, 
independent_pairFormation, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
dependent_functionElimination, 
unionElimination, 
pointwiseFunctionality, 
promote_hyp, 
baseClosed, 
baseApply, 
closedConclusion, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
independent_functionElimination, 
divideEquality, 
imageElimination, 
imageMemberEquality, 
universeEquality, 
independent_pairEquality, 
axiomEquality, 
functionExtensionality, 
functionEquality, 
remainderEquality, 
minusEquality, 
instantiate, 
cumulativity
Latex:
\mforall{}x1:\mBbbR{}
    \mforall{}[x2,y1:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].
        \mforall{}y2:\mBbbR{}.  (bdd-diff(y1;y2)  {}\mRightarrow{}  bdd-diff(x1;x2)  {}\mRightarrow{}  bdd-diff(reg-seq-mul(x1;y1);reg-seq-mul(x2;y2)))
Date html generated:
2017_10_02-PM-07_15_06
Last ObjectModification:
2017_07_28-AM-07_20_19
Theory : reals
Home
Index