Nuprl Lemma : absval_nat_plus

[x:ℤ]. |x| ∈ ℕ+ supposing ¬(x 0 ∈ ℤ)


Proof




Definitions occuring in Statement :  absval: |i| nat_plus: + uimplies: supposing a uall: [x:A]. B[x] not: ¬A member: t ∈ T natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat_plus: + subtype_rel: A ⊆B nat: prop: uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) nequal: a ≠ b ∈ 
Lemmas referenced :  absval_wf nat_wf less_than_wf not_wf equal_wf absval-positive
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_set_memberEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality lambdaEquality setElimination rename sqequalRule natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry intEquality isect_memberEquality because_Cache productElimination independent_isectElimination

Latex:
\mforall{}[x:\mBbbZ{}].  |x|  \mmember{}  \mBbbN{}\msupplus{}  supposing  \mneg{}(x  =  0)



Date html generated: 2016_05_14-AM-07_20_37
Last ObjectModification: 2015_12_26-PM-01_32_12

Theory : int_2


Home Index