Nuprl Lemma : absval-positive

[x:ℤ]. uiff(0 < |x|;x ≠ 0)


Proof




Definitions occuring in Statement :  absval: |i| less_than: a < b uiff: uiff(P;Q) uall: [x:A]. B[x] nequal: a ≠ b ∈  natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False prop: nequal: a ≠ b ∈  guard: {T} subtype_rel: A ⊆B decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q le: A ≤ B subtract: m bfalse: ff exists: x:A. B[x] sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b rev_uimplies: rev_uimplies(P;Q) nat: gt: i > j
Lemmas referenced :  absval_unfold lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf less_than_transitivity1 le_weakening less_than_irreflexivity equal_wf equal-wf-base int_subtype_base decidable__lt false_wf not-lt-2 not-equal-2 less-iff-le add_functionality_wrt_le add-associates add-swap add-commutes zero-add le-add-cancel condition-implies-le minus-add minus-zero add-zero nequal_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base iff_transitivity assert_wf bnot_wf not_wf iff_weakening_uiff assert_of_bnot decidable__le le_wf not-le-2 or_wf absval_wf nat_wf member-less_than not-gt-2 subtract_wf le_reflexive minus-one-mul-top minus-le le-add-cancel-alt minus-one-mul add-mul-special zero-mul
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis minusEquality natural_numberEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination because_Cache lessCases sqequalAxiom isect_memberEquality independent_pairFormation voidElimination voidEquality imageMemberEquality baseClosed imageElimination independent_functionElimination dependent_functionElimination intEquality applyEquality lambdaEquality addEquality dependent_pairFormation promote_hyp instantiate cumulativity impliesFunctionality inlFormation inrFormation addLevel orFunctionality independent_pairEquality setElimination rename multiplyEquality

Latex:
\mforall{}[x:\mBbbZ{}].  uiff(0  <  |x|;x  \mneq{}  0)



Date html generated: 2017_04_14-AM-07_16_57
Last ObjectModification: 2017_02_27-PM-02_51_48

Theory : arithmetic


Home Index