Nuprl Lemma : minus-le

[n,x:ℤ].  uiff((-n) ≤ x;0 ≤ (x n))


Proof




Definitions occuring in Statement :  uiff: uiff(P;Q) uall: [x:A]. B[x] le: A ≤ B add: m minus: -n natural_number: $n int:
Definitions unfolded in proof :  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T le: A ≤ B not: ¬A implies:  Q false: False prop: uall: [x:A]. B[x] all: x:A. B[x] subtype_rel: A ⊆B top: Top
Lemmas referenced :  add-swap zero-add add-associates add_functionality_wrt_le zero-mul add-mul-special minus-one-mul-top minus-one-mul add-commutes int_subtype_base add-is-int-iff le_reflexive less_than'_wf le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity independent_pairFormation isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality lambdaEquality dependent_functionElimination hypothesisEquality because_Cache axiomEquality equalityTransitivity hypothesis equalitySymmetry lemma_by_obid isectElimination minusEquality voidElimination natural_numberEquality addEquality intEquality isect_memberEquality baseApply closedConclusion baseClosed applyEquality independent_isectElimination voidEquality

Latex:
\mforall{}[n,x:\mBbbZ{}].    uiff((-n)  \mleq{}  x;0  \mleq{}  (x  +  n))



Date html generated: 2016_05_13-PM-03_31_35
Last ObjectModification: 2016_01_14-PM-06_41_11

Theory : arithmetic


Home Index